Previous |  Up |  Next

Article

Title: Geometry of second-order connections and ordinary differential equations (English)
Author: Vondra, Alexandr
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 2
Year: 1995
Pages: 145-167
Summary lang: English
.
Category: math
.
Summary: The geometry of second-order systems of ordinary differential equations represented by $2$-connections on the trivial bundle $\operatorname{pr_1} \Bbb R\times M\to\Bbb R$ is studied. The formalism used, being completely utilizable within the framework of more general situations (partial equations), turns out to be of interest in confrontation with a traditional approach (semisprays), moreover, it amounts to certain new ideas and results. The paper is aimed at discussion on the interrelations between all types of connections having to do with integral sections (geodesics), integrals and symmetries of the equations studied. (English)
Keyword: geometry of second-order systems of ordinary differential equations
Keyword: $2$- connections
Keyword: connection
Keyword: semispray
Keyword: differential equation
Keyword: integral
Keyword: symmetry
MSC: 34A26
MSC: 53C05
MSC: 58A20
MSC: 70H03
MSC: 70H35
idZBL: Zbl 0836.34007
idMR: MR1357599
DOI: 10.21136/MB.1995.126226
.
Date available: 2009-09-24T21:10:01Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126226
.
Reference: [1] M. Anastasiei, H. Kawaguchi: A geometrical theory of the time dependent Lagrangians I. Non-linear connections.Tensor, N.S. 48 (1989), 273-282; II. M-connections. Tensor, N.S. 48 (1989), 283-293; III. Applications. Tensor, N.S. 49 (1990), 296-304.
Reference: [2] M. Crampin: On the differential geometry of the Euler-Lagrange equations and the inveгse pгoblem of Lagrangian dynamics.J. Phys. A: Math. Gen. 14 (1981), 2567-2575. MR 0629315, 10.1088/0305-4470/14/10/012
Reference: [3] M. Crampin: Alternative Lagrangians in particle dynamics.Pгoc. Conf. Diff. Geom. and Its Appl., Bгno, 1986. J. E. Purkyně University, Brno, 1986, pp. 1-12. MR 0923340
Reference: [4] A. Dekrét: Mechanical structures and connections.Proc. Conf. Diff. Geom. and Appl., Dubrovnik, 1988. University of Novi Sad, Novi Sad, 1989, pp. 121-131. MR 1040061
Reference: [5] A. Dekrét: Vector fields and connections on TM.Časopis Pěst. Mat. 115 (1990), 360-367. MR 1090860
Reference: [6] M. de León, P. R. Rodrigues: Methods of Differential Geometry in Analytical Mechanics.North-Holland Mathematics Studies 158, North-Holland, Amsterdam, 1989. MR 1021489
Reference: [7] M. Doupovec, I. Kolář: Natural affinors on time-dependent Weil bundles.Arch. Math. (Brno) 27 (1991), 205-209. MR 1189217
Reference: [8] M. Doupovec, A. Vondra: On certain natural transformations between connections.Proc. Conf. Diff. Geom. and Its Appl., Opava, 1992. Silesian University, Opava, 1993, pp. 273-279. MR 1255548
Reference: [9] M. Doupovec, A. Vondra: Some natural operations between connections on fibered manifolds.Preprint, Brno, 1993. MR 1396603
Reference: [10] J. Grifone: Structure presque-tangente et connexions, I.Ann. Inst. Fourier, Grenoble 22, 3 (1972), 287-334; Structure presque-tangente et connexions, II. Ann. Inst. Fourier, Grenoble 22, 4 (1972), 291-338. Zbl 0219.53032, MR 0336636, 10.5802/aif.431
Reference: [11] D. Chinea M. de León, J. C. Marrero: The constraint algoritm for the time-dependent Lagrangians.Preprint, 1992. MR 1230594
Reference: [12] I. Kolář: Connections in 2-fibered manifolds.Arch. Math. (Brno) 17 (1981), 23-30. MR 0672485
Reference: [13] I. Kolář: Some natural operations with connections.J. Nat. Acad. Math. 5 (1987), 127-141. MR 0994555
Reference: [14] I. Kolář P. W. Michor, and J. Slovák: Natural Operations in Differential Geometry.Springer, 1993. MR 1202431
Reference: [15] D. Krupka, J. Janyška: Lectures on differential invariants.Folia Fac. Sci. Nat. Univ. Purk. Brun. Phys., J. E. Purkyně University, Brno, 1990. MR 1108622
Reference: [16] O. Krupková: Variational analysis on fibered manifolds over one-dimensional bases.PҺ.D. Thesis, Dept. of Mathematics, Silesian Univ. at Opava, Czechoslovakia, 1992.
Reference: [17] O. Krupková, A. Vondra: On some integration methods for connections on fibered manifolds.Proc. Conf. Diff. Geom. and Its Appl., Opava, 1992. Silesian University, Opava, 1993, pp. 89-101. MR 1255531
Reference: [18] O. Krupková: Variational metrics on R x TM and the geometry of nonconservative mechanics.Math. Slovaca 44 (1994), 315-335. MR 1307321
Reference: [19] L. Mangiarotti, M. Modugno: Fibred spaces, jet spaces and connections for field theories.Proceedings of International Meeting "Geometry and Physics", Florence, 1982. Pitagora Editrice, Bologna, 1983, pp. 135-165. MR 0760841
Reference: [20] L. Mangiarotti, M. Modugno: Connections and differential calculus on fibred manifolds. Applications to field theory.Istituto di Matematica Applicata "G. Sansone", Firense. To appear.
Reference: [21] E. Martínez J. F. Cariñena, W. Sarlet: Derivations of differential forms along the tangent bundle pгojection I.Diff. Geom. Appl. 2 (1992), 17-43; Derivations of differential forms along the tangent bundle projection II. Diff. Geom. Appl. 3 (1993), 1-29.
Reference: [22] J. F. Pommaret: Systems of partial differential equations and Lie pseudogroups.Mir, Moscow, 1983. (In Russian.) Zbl 0544.58023, MR 0731697
Reference: [23] G. E. Prince: A complete classification of dynamical symmetries in classical mechanics.Bull. Austral. Math. Soc. 32 (1985), 299-308. Zbl 0578.58018, MR 0815371, 10.1017/S0004972700009977
Reference: [24] W. Sarlet E. Martínez, and A. Vandecasteele: Calculus of forms along a map adapted to the study of second-order differential equations.Proc. Conf. Diff. Geom. and Its Appl., Opava, 1992. Silesian University, Opava, 1993, pp. 123-133. MR 1255533
Reference: [25] D. J. Saunders: The Geometry of Jet Bundles.London Mathematical Society Lecture Note Series 142, Cambridge University Press, Cambridge, 1989. Zbl 0665.58002, MR 0989588
Reference: [26] A. M. Vinogradov I. S. Krasiľshchik, V. V. Lychagin: An introduction to the geometry of nonlinear differential equations.Nauka, Moscow, 1986. (In Russian.) MR 0855844
Reference: [27] A. Vondra: Semisprays, connections and regular equations in higher order mechanics.In Proc. Conf. Diff. Geom. and Its Appl., Brno 1989. World Scientific, Singapore, 1990, pp. 276-287. MR 1062030
Reference: [28] A. Vondra: On some connections related to the geometry of regular higher-order dynamics.Sborník VA, řada B 2 (1992), 7-18.
Reference: [29] A. Vondra: Sprays and homogeneous connections on R x TM.Arch. Math. (Brno) 28 (1992), 163-173. MR 1222283
Reference: [30] A. Vondra: Natural dynamical connections.Czechoslovak Math. J. 41 (1991), 724-730. Zbl 0764.53019, MR 1134961
Reference: [31] A. Vondra: Symmetries of connections on fibered manifolds.Arch. Math. (Brno) 30 (1994), 97-115. Zbl 0813.35006, MR 1292562
.

Files

Files Size Format View
MathBohem_120-1995-2_4.pdf 1.536Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo