Previous |  Up |  Next

Article

Title: Exact $2$-step domination in graphs (English)
Author: Chartrand, Gary
Author: Harary, Frank
Author: Hossain, Moazzem
Author: Schultz, Kelly
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 2
Year: 1995
Pages: 125-134
Summary lang: English
.
Category: math
.
Summary: For a vertex $v$ in a graph $G$, the set $N_2(v)$ consists of those vertices of $G$ whose distance from $v$ is 2. If a graph $G$ contains a set $S$ of vertices such that the sets $N_2(v)$, $v\in S$, form a partition of $V(G)$, then $G$ is called a $2$-step domination graph. We describe $2$-step domination graphs possessing some prescribed property. In addition, all $2$-step domination paths and cycles are determined. (English)
Keyword: $2$-step domination graph
Keyword: paths
Keyword: cycles
MSC: 05C12
MSC: 05C38
MSC: 05C70
idZBL: Zbl 0863.05050
idMR: MR1357597
DOI: 10.21136/MB.1995.126228
.
Date available: 2009-09-24T21:09:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126228
.
Reference: [1] G. Chartrand, L. Lesniak: Graphs & Digraphs.(second edition). Wadsworth k. Brooks/Cole, Monterey, 1986. Zbl 0666.05001, MR 0834583
Reference: [2] F. Harary: Graph Theory.Addison-Wesley, Reading, 1969. Zbl 0196.27202, MR 0256911
.

Files

Files Size Format View
MathBohem_120-1995-2_2.pdf 598.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo