Previous |  Up |  Next

Article

Title: The structure of $\omega$-limit sets for continuous maps of the interval (English)
Author: Bruckner, Andrew M.
Author: Smítal, Jaroslav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 1
Year: 1992
Pages: 42-47
Summary lang: English
.
Category: math
.
Summary: We prove that every infinite nowhere dense compact subset of the interval $I$ is an $\omega$-limit set of homoclinic type for a continuous function from $I$ to $I$. (English)
Keyword: discrete dynamical system
Keyword: continuous map
Keyword: $\omega$-limit set
Keyword: homoclinic set
MSC: 26A18
MSC: 37C70
MSC: 54H20
MSC: 58F12
idZBL: Zbl 0762.26003
idMR: MR1154053
DOI: 10.21136/MB.1992.126240
.
Date available: 2009-09-24T20:49:39Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126240
.
Reference: [1] S. J. Agronsky A. M. Bruckner J. G. Ceder T. L. Pearson: The structure of $\omega$-limit sets for continuous functions.Real Analysis Exchange 15 (1989-1990), 483-510. MR 1059418, 10.2307/44152033
Reference: [2] A. N. Šarkovskii: Attracting and attracted sets.Soviet Math. Dokl. 6 (1965), 268-270.
Reference: [3] A. N. Šarkovskii: The partially ordered system of attracting sets.Soviet Math. Dokl. 7 (1966), 1384-1386. MR 0209413
Reference: [4] A. N. Šarkovskii: Attracting sets containing no cycles.Ukrain. Mat. Ž. 20 (1968), 136-142. (In Russian.) MR 0225314
.

Files

Files Size Format View
MathBohem_117-1992-1_5.pdf 765.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo