Previous |  Up |  Next

Article

Title: Sequential convergences on free lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 1
Year: 1992
Pages: 48-54
Summary lang: English
.
Category: math
.
Summary: In this paper the partially ordered set Conv $G$ of all sequential convergences on $G$ is investigated, where $G$ is either a free lattice ordered group or a free abelian lattice ordered group. (English)
Keyword: free lattice-ordered group
Keyword: compatible sequential convergences
Keyword: atom
Keyword: free abelian lattice ordered group
Keyword: sequential convergence
MSC: 06F15
MSC: 06F20
MSC: 54H11
idZBL: Zbl 0770.06007
idMR: MR1154054
DOI: 10.21136/MB.1992.126229
.
Date available: 2009-09-24T20:49:48Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126229
.
Reference: [1] M. Anderson T. Feil: Lattice-Ordered Groups, An Introduction.Reidel Publ., Dordrecht, 1988. MR 0937703
Reference: [2] S. Bernau: Free abelian lattice groups.Math. Ann. 150(1969), 48-59. Zbl 0157.36801, MR 0241340
Reference: [3] G. Birkhoff: Lattice Theory.Third Edition, Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [4] P. Conrad: Free abelian l-groups and vector lattices.Math. Ann. 190 (1971), 306-312. MR 0281667, 10.1007/BF01431159
Reference: [5] P. Conrad: Free lattice-ordered groups.J. Algebra 16 (1970), 191-203. Zbl 0213.31502, MR 0270992, 10.1016/0021-8693(70)90024-4
Reference: [6] P. Conrad: Lattice-Ordered Groups.Tulane Lecture Notes; New Orleans, 1970. Zbl 0258.06011
Reference: [7] R. Frič F. Zanolin: Sequential convergence in free groups.Rend. Ist. Matem. Univ. Trieste 18 (1986), 200-218. MR 0928331
Reference: [8] M. Harminc: Sequential convergences on abelian lattice-ordered groups.Convergence Structures 1984. Mathematical Research, Band 24, Akademie-Verlag, Berlin, 1985, pp. 153-158. MR 0835480
Reference: [9] M. Harminc: The cardinality of the system of all sequential convergences on an abelian lattice ordered group.Czechoslovak Math. J. 31 (1987), 533-546. MR 0913986
Reference: [10] M. Harminc: Sequential convergences on lattice ordered groups.Czechoslov. Math. J 39 (1989), 232-238. MR 0992130
Reference: [11] M. Harminc: Convergences on lattice ordered groups.Dissertation, Math. Inst. Slovak Acad. Sci, 1986. (In Slovak.)
Reference: [12] M. Harminc J. Jakubík: Maximal convergences and minimal proper convergences in l-groups.Czechoslov. Math. J. 39 (1989), 631-640. MR 1017998
Reference: [13] J. Jakubík: Convergences and complete distributivity of lattice ordered groups.Math. Slovaca 38 (1988), 269-272. MR 0977905
Reference: [14] J. Jakubík: Lattice ordered groups having a largest convergence.Czechoslov. Math. J. 39 (1989), 717-729. MR 1018008
Reference: [15] B. M. Koпытов: Рещеточно упорядоченные группы.Mocквa, 1984. Zbl 1063.82528
Reference: [16] J. Novák: On a free convergence group..Proc. Conf. on Convergence Structures, Lawton, Oklahoma, 1980, pp. 97-102. MR 0605123
Reference: [17] E. C. Weinberg: Free lattice-ordered abelian groups.Math. Ann. 151 (1963), 187-199. Zbl 0114.25801, MR 0153759, 10.1007/BF01398232
Reference: [18] E. C. Weinberg: Free lattice-ordered abelian groups. II.Math. Ann. 159 (1965), 217-222. Zbl 0138.26201, MR 0181668, 10.1007/BF01362439
.

Files

Files Size Format View
MathBohem_117-1992-1_6.pdf 770.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo