Previous |  Up |  Next

Article

Title: On weighted estimates of solutions of nonlinear elliptic problems (English)
Author: Skrypnik, Igor V.
Author: Larin, Dmitry V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 173-184
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the estimate \vert u(x,k)\vert\leq K\vert k\vert\left\{\mathop cap\nolimits_{p,w}(F)\frac{\rho^p}{w(B(x,\rho))}\right\} ^{\frac1{p-1}}, $2\<p<n$ for a solution of a degenerate nonlinear elliptic equation in a domain ${B(x_0,1)\setminus F}$, $F\subset B(x_0,d)=\{x\in\Bbb R^n |x_0-x|<d\}$, $d<\frac12$, under the boundary-value conditions $u(x,k)=k$ for $x\in\partial F$, $ u(x,k)=0$ for $x\in\partial B(x_0,1)$ and where $0<\rho\leq\mathop dist(x,F)$, $w(x)$ is a weighted function from some Muckenhoupt class, and $\mathop cap_{p,w}(F)$, $w(B(x,\rho))$ are weighted capacity and measure of the corresponding sets. (English)
Keyword: degeneracy
Keyword: Muckenhoupt class
Keyword: pointwise estimate
Keyword: nonlinear elliptic equation
Keyword: capacity
Keyword: a-priori estimate
MSC: 35B45
MSC: 35J70
idZBL: Zbl 0937.35074
idMR: MR1780690
DOI: 10.21136/MB.1999.126242
.
Date available: 2009-09-24T21:36:49Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126242
.
Reference: [1] Skrypnik I. V.: Nonlinear elliptic boundary value problems.B. G. Teubner Verlag, Leipzig, 1986. Zbl 0617.35001, MR 0915342
Reference: [2] Skrypnik I. V.: New conditions of homogenization of nonlinear Dirichlet problems in perforated domains.Ukrainian Math. J. 48 (1996), no. 5, 675-694. MR 1417035, 10.1007/BF02384225
Reference: [3] Heinonen J., Kilpelainen T., Martio O.: Nonlinear potential theory of degenerate elliptic equations.Clarendon Press, Oxford, 1993. MR 1207810
Reference: [4] Chanillo S., Wheeden R. L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions.Amer. J. Math. 107 (1985), 1191-1226. Zbl 0575.42026, MR 0805809, 10.2307/2374351
Reference: [5] Kufner A.: Weighted Sobolev spaces.B.G.Teubner Verlag, Leipzig, 1980. Zbl 0455.46034, MR 0664599
Reference: [6] Gutiérrez C. E., Nelson G. S.: Bounds for the fundamental solution of degenerate parabolic equations.Commun. Partial Differential Equations 13 (1988), no. 5, 635-649. MR 0919445, 10.1080/03605308808820555
Reference: [7] Leonardi S., Skrypnik I. I.: Necessary condition for regularity of a boundary point for a degenerate quasilinear parabolic equations.Catania Univ., Catania, 1995, preprint.
.

Files

Files Size Format View
MathBohem_124-1999-2_6.pdf 2.134Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo