Previous |  Up |  Next

Article

Title: Alcune osservazioni sul rango numerico per operatori non lineari (Italian)
Title: Some remarks on numerical ranges for nonlinear operators (English)
Author: Appell, Jürgen
Author: Conti, G.
Author: Santucci, P.
Language: Italian
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 185-192
Summary lang: English
.
Category: math
.
Summary: We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984). (English)
Keyword: nonlinear operator
Keyword: Lipschitz continuity
Keyword: spectrum
Keyword: numerical range
Keyword: convex hull
Keyword: polynomial hull
MSC: 15A60
MSC: 47A12
MSC: 47H09
MSC: 47H12
MSC: 47H17
MSC: 47H99
MSC: 47J10
MSC: 47J25
MSC: 47J99
MSC: 65F99
idZBL: Zbl 0940.47052
idMR: MR1780691
DOI: 10.21136/MB.1999.126249
.
Date available: 2009-09-24T21:36:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126249
.
Reference: [1] Appell J., De Pascale E., Vignoli A.: A comparison of different spectra for nonlinear operators.To appear. Zbl 0956.47035
Reference: [2] Appell J., Dörfner M.: Some spectral theory for nonlinear operators.Nonlinear Anal., Theory Methods Appl. 28 (1997), no. 12, 1955-1976. Zbl 0876.47042, MR 1436365, 10.1016/S0362-546X(96)00040-5
Reference: [3] Bonsall F. F., Duncan J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras.Cambridge Univ. Press, Cambridge, 1971. Zbl 0207.44802, MR 0288583
Reference: [4] Bonsall F. F., Duncan J.: Numerical Ranges II.Cambridge Univ.Press, Cambridge, 1973. Zbl 0262.47001, MR 0442682
Reference: [5] Canavati J.: A theory of numerical range for nonlinear operators.J. Fund. Anal. 33 (1979), 231-258. Zbl 0445.47045, MR 0549114, 10.1016/0022-1236(79)90067-3
Reference: [6] Conti G., De Pascale E.: The numerical range in the nonlinear case.Boll. Unione Mat. Ital. 15-B (1978), 210-216. Zbl 0386.47042, MR 0493572
Reference: [7] Deimling K.: Nonlinear Functional Analysis.Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [8] Diestel J.: Geometry of Banach Spaces-Selected Topics.Springer, Berlin, 1975. Zbl 0307.46009, MR 0461094
Reference: [9] Dörfner M.: Beiträge zur Spektraltheorie nichtlinearer Operatoren.Ph.D. thesis, 1997.
Reference: [10] Feng W.: A new spectral theory for nonlinear operators and its applications.Abstr. Appl. Anal. 2 (1997), 163-183. Zbl 0952.47047, MR 1604177, 10.1155/S1085337597000328
Reference: [11] Furi M., Martelli M., Vignoli A.: Contributions to the spectral theory for nonlinear operators in Banach spaces.Annali Mat. Pura Appl. 118 (1978), 229-294. Zbl 0409.47043, MR 0533609
Reference: [12] Furi M., Martelli M., Vignoli A.: On the solvability of nonlinear operator equations in normed spaces.Annali Mat. Pura Appl. 128 (1980), 321-343. Zbl 0456.47051, MR 0591562
Reference: [13] Gustafson K. E., Rao D. K. M.: Numerical Range.Springer, Berlin, 1997. MR 1417493
Reference: [14] Kachurovskij R. L: Regular points, spectrum and eigenfunctions of nonlinear operators.Dokl. Akad. Nauk SSSR 188 (1969), 274-277. (In Russian, Engl.transl. Soviet Math. Dokl. 10 (1969), 1101-1105.) Zbl 0197.40402, MR 0251599
Reference: [15] Lumer G.: Semi-inner product spaces.Transl. Amer. Math. Soc. 100 (1961), 29-43. Zbl 0102.32701, MR 0133024, 10.1090/S0002-9947-1961-0133024-2
Reference: [16] Maddox I. J., Wickstead A. W.: The spectrum of uniformly Lipschitz mappings.Proc. Royal Irish Acad. 89-A (1989), 101-114. Zbl 0661.47048, MR 1021228
Reference: [17] Neuberger J. W.: Existence of a spectrum for nonlinear transformations.Pacific J. Math. 31 (1969), 157-159. Zbl 0182.47203, MR 0259696, 10.2140/pjm.1969.31.157
Reference: [18] Pietschmann F., Rhodius A.: The numerical ranges and the smooth points of the unit sphere.Act. Sci. Math. 55 (1989), 377-379. Zbl 0697.47003, MR 1033610
Reference: [19] Rhodius A.: Der numerische Wertebereich für nicht notwendig lineare Abbildungen.Math. Nachr. 72 (1976), 169-180. Zbl 0297.47059, MR 0410501, 10.1002/mana.19760720115
Reference: [20] Rhodius A.: Der numerische Wertebereich und die Lösbarkeit linearer und nichtlinearer Gleichungen.Math. Nachr. 79 (1977), 343-360. MR 0637086, 10.1002/mana.19770790137
Reference: [21] Rhodius A.: Über numerische Wertebereiche und Spektralwertabschätzungen.Acta Sci. Math. 47 (1984), 465-470. Zbl 0575.47005, MR 0783322
Reference: [22] Verma R. U.: Approximation-solvability and numerical ranges in Banach spaces.Panam. Math. J. 1 (1992), 49-56. MR 1116245
Reference: [23] Verma R. U.: The numerical range of nonlinear Banach space operators.Acta Math. Hung. 63 (1994), 305-312. Zbl 0796.47051, MR 1261473, 10.1007/BF01874455
Reference: [24] Williams J. P.: Spectra of products and numerical ranges.J. Math. Anal. Appl. 11 (1967), 214-220. Zbl 0143.36703, MR 0203491, 10.1016/0022-247X(67)90146-1
Reference: [25] Zarantonello E. H.: The numerical range contains the spectrum.Pacific J. Math. 22 (1967), 575-595. Zbl 0152.34602, MR 0229079, 10.2140/pjm.1967.22.575
Reference: [26] Zeidler E.: Nonlinear Functional Anaiysis and its Applications II/B: Nonlinear Monotone Operators.Springer, Berlin, 1990. MR 1033498
.

Files

Files Size Format View
MathBohem_124-1999-2_7.pdf 1.891Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo