Previous |  Up |  Next


least gradient; sets of finite perimeter; area-minimizing sets; obstacle
For a given domain $\Omega\subset\Bbb{R}^n$, we consider the variational problem of minimizing the $L^1$-norm of the gradient on $\Omega$ of a function $u$ with prescribed continuous boundary values and satisfying a continuous lower obstacle condition $u\ge\psi$ inside $\Omega$. Under the assumption of strictly positive mean curvature of the boundary $\partial\Omega$, we show existence of a continuous solution, with Holder exponent half of that of data and obstacle. This generalizes previous results obtained for the unconstrained and double-obstacle problems. The main new feature in the present analysis is the need to extend various maximum principles from the case of two area-minimizing sets to the case of one sub- and one superminimizing set. This we accomplish subject to a weak regularity assumption on one of the sets, sufficient to carry out the analysis. Interesting open questions include the uniqueness of solutions and a complete analysis of the regularity properties of area superminimizing sets. We provide some preliminary results in the latter direction, namely a new monotonicity principle for superminimizing sets, and the existence of "foamy" superminimizers in two dimensions.
[1] Adams D. R., Hedberg L. I.: Function Spaces and Potential Theory. Springer-Verlag, 1996. MR 1411441
[2] Biroli M., Mosco U.: Wiener criterion and potential estimates for obstacle problems relative to degenerate elliptic operators. Ann. Mat. Pura Appl. 159 (1991), 255-281. DOI 10.1007/BF01766304 | MR 1145100 | Zbl 0761.35035
[3] Bombieri E., De Giorgi E., Giusti E.: Minimal cones and the Bernstein problem. Invent. Math. 7 (1969), 255-267. DOI 10.1007/BF01404309 | MR 0250205 | Zbl 0183.25901
[4] Choe H. J., Lewis J. L.: On the obstacle problem for quasilinear elliptic equations of p Laplacian type. SIAM J. Math. Anal. 22 (1991), 623-638. DOI 10.1137/0522039 | MR 1091673 | Zbl 0762.35035
[5] Federer H.: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418-491. DOI 10.1090/S0002-9947-1959-0110078-1 | MR 0110078 | Zbl 0089.38402
[6] Federer H.: Geometric Measure Theory. Springer-Verlag, New York, 1969. MR 0257325 | Zbl 0176.00801
[7] Fleming W. H. R. Rishel: An integral formula for total gradient variation. Arch. Math. 11 (1960), 218-222. DOI 10.1007/BF01236935 | MR 0114892
[8] Frehse J., Mosco U.: Variational inequalities with one-sided irregular obstacles. Manuscripta Math. 28 (1979), 219-233. DOI 10.1007/BF01647973 | MR 0535703 | Zbl 0447.49006
[9] Gilbarg D., Trudinger N. S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1983, Second Ed. MR 0737190 | Zbl 0562.35001
[10] Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, 1985. MR 0775682
[11] Heinonen J., Kilpeläinen, T, Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford, 1993. MR 1207810 | Zbl 0780.31001
[12] Lieberman G.: Regularity of solutions to some degenerate double obstacle problems. Indiana Univ. Math. J. 40 (1991), 1009-1028. DOI 10.1512/iumj.1991.40.40045 | MR 1129339 | Zbl 0767.35029
[13] Malý J., Ziemer W. P.: Fine Regularity of Elliptic Equations. Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, 1997. DOI 10.1090/surv/051/04 | MR 1461542
[14] Moschen, Maria Pia: Principio di massimo forte per le frontiere di misura minima. Ann. Univ. Ferrara, Sez. VII 23 (1977), 165-168. MR 0482508 | Zbl 0384.49030
[15] Mu, Jun, Ziemer W. P.: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations. Commun. Partial Differential Equations 16 (1991), 821-843. DOI 10.1080/03605309108820780 | MR 1113109 | Zbl 0742.35010
[16] Michael J., Ziemer W. P.: Existence of solutions to nonlinear obstacle problems. Nonlinear Anal. 17 (1991), 45-73. DOI 10.1016/0362-546X(91)90120-P | MR 1113449
[17] Simon L.: Lectures on Geometric Measure Theory. Proc. Centre Math. Analysis, ANU Vol. 3, 1983. MR 0756417 | Zbl 0546.49019
[18] Simon L.: A strict maximum principle for area minimizing hypersurfaces. J. Differential Geom. 26 (1987), 327-335. DOI 10.4310/jdg/1214441373 | MR 0906394 | Zbl 0625.53052
[19] Sternberg P., Ziemer W. P.: The Dirchlet problem for functions of least gradient. IMA Vol. Math. Appl. 47 (1993), 197-214. MR 1246349
[20] Sternberg P., Williams G., Ziemer W. P.: Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992), 35-60. MR 1172906 | Zbl 0756.49021
[21] Ziemer W. P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag, New York, 1989, Graduate Texts in Math. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo