Title:
|
The obstacle problem for functions of least gradient (English) |
Author:
|
Ziemer, William P. |
Author:
|
Zumbrun, Kevin |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
124 |
Issue:
|
2 |
Year:
|
1999 |
Pages:
|
193-219 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a given domain $\Omega\subset\Bbb{R}^n$, we consider the variational problem of minimizing the $L^1$-norm of the gradient on $\Omega$ of a function $u$ with prescribed continuous boundary values and satisfying a continuous lower obstacle condition $u\ge\psi$ inside $\Omega$. Under the assumption of strictly positive mean curvature of the boundary $\partial\Omega$, we show existence of a continuous solution, with Holder exponent half of that of data and obstacle.
This generalizes previous results obtained for the unconstrained and double-obstacle problems. The main new feature in the present analysis is the need to extend various maximum principles from the case of two area-minimizing sets to the case of one sub- and one superminimizing set. This we accomplish subject to a weak regularity assumption on one of the sets, sufficient to carry out the analysis. Interesting open questions include the uniqueness of solutions and a complete analysis of the regularity properties of area superminimizing sets. We provide some preliminary results in the latter direction, namely a new monotonicity principle for superminimizing sets, and the existence of "foamy" superminimizers in two dimensions. (English) |
Keyword:
|
least gradient |
Keyword:
|
sets of finite perimeter |
Keyword:
|
area-minimizing sets |
Keyword:
|
obstacle |
MSC:
|
35J85 |
MSC:
|
35R35 |
MSC:
|
49Q05 |
idZBL:
|
Zbl 0936.49024 |
idMR:
|
MR1780692 |
DOI:
|
10.21136/MB.1999.126244 |
. |
Date available:
|
2009-09-24T21:37:11Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126244 |
. |
Reference:
|
[1] Adams D. R., Hedberg L. I.: Function Spaces and Potential Theory.Springer-Verlag, 1996. MR 1411441 |
Reference:
|
[2] Biroli M., Mosco U.: Wiener criterion and potential estimates for obstacle problems relative to degenerate elliptic operators.Ann. Mat. Pura Appl. 159 (1991), 255-281. Zbl 0761.35035, MR 1145100, 10.1007/BF01766304 |
Reference:
|
[3] Bombieri E., De Giorgi E., Giusti E.: Minimal cones and the Bernstein problem.Invent. Math. 7 (1969), 255-267. Zbl 0183.25901, MR 0250205, 10.1007/BF01404309 |
Reference:
|
[4] Choe H. J., Lewis J. L.: On the obstacle problem for quasilinear elliptic equations of p Laplacian type.SIAM J. Math. Anal. 22 (1991), 623-638. Zbl 0762.35035, MR 1091673, 10.1137/0522039 |
Reference:
|
[5] Federer H.: Curvature measures.Trans. Amer. Math. Soc. 93 (1959), 418-491. Zbl 0089.38402, MR 0110078, 10.1090/S0002-9947-1959-0110078-1 |
Reference:
|
[6] Federer H.: Geometric Measure Theory.Springer-Verlag, New York, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[7] Fleming W. H. R. Rishel: An integral formula for total gradient variation.Arch. Math. 11 (1960), 218-222. MR 0114892, 10.1007/BF01236935 |
Reference:
|
[8] Frehse J., Mosco U.: Variational inequalities with one-sided irregular obstacles.Manuscripta Math. 28 (1979), 219-233. Zbl 0447.49006, MR 0535703, 10.1007/BF01647973 |
Reference:
|
[9] Gilbarg D., Trudinger N. S.: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1983, Second Ed. Zbl 0562.35001, MR 0737190 |
Reference:
|
[10] Giusti E.: Minimal Surfaces and Functions of Bounded Variation.Birkhäuser, 1985. MR 0775682 |
Reference:
|
[11] Heinonen J., Kilpeläinen, T, Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford University Press, Oxford, 1993. Zbl 0780.31001, MR 1207810 |
Reference:
|
[12] Lieberman G.: Regularity of solutions to some degenerate double obstacle problems.Indiana Univ. Math. J. 40 (1991), 1009-1028. Zbl 0767.35029, MR 1129339, 10.1512/iumj.1991.40.40045 |
Reference:
|
[13] Malý J., Ziemer W. P.: Fine Regularity of Elliptic Equations.Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, 1997. MR 1461542, 10.1090/surv/051/04 |
Reference:
|
[14] Moschen, Maria Pia: Principio di massimo forte per le frontiere di misura minima.Ann. Univ. Ferrara, Sez. VII 23 (1977), 165-168. Zbl 0384.49030, MR 0482508 |
Reference:
|
[15] Mu, Jun, Ziemer W. P.: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations.Commun. Partial Differential Equations 16 (1991), 821-843. Zbl 0742.35010, MR 1113109, 10.1080/03605309108820780 |
Reference:
|
[16] Michael J., Ziemer W. P.: Existence of solutions to nonlinear obstacle problems.Nonlinear Anal. 17 (1991), 45-73. MR 1113449, 10.1016/0362-546X(91)90120-P |
Reference:
|
[17] Simon L.: Lectures on Geometric Measure Theory.Proc. Centre Math. Analysis, ANU Vol. 3, 1983. Zbl 0546.49019, MR 0756417 |
Reference:
|
[18] Simon L.: A strict maximum principle for area minimizing hypersurfaces.J. Differential Geom. 26 (1987), 327-335. Zbl 0625.53052, MR 0906394, 10.4310/jdg/1214441373 |
Reference:
|
[19] Sternberg P., Ziemer W. P.: The Dirchlet problem for functions of least gradient.IMA Vol. Math. Appl. 47 (1993), 197-214. MR 1246349 |
Reference:
|
[20] Sternberg P., Williams G., Ziemer W. P.: Existence, uniqueness, and regularity for functions of least gradient.J. Reine Angew. Math. 430 (1992), 35-60. Zbl 0756.49021, MR 1172906 |
Reference:
|
[21] Ziemer W. P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation.Springer-Verlag, New York, 1989, Graduate Texts in Math. Zbl 0692.46022, MR 1014685 |
. |