Previous |  Up |  Next

Article

Title: Local solvability and regularity results for a class of semilinear elliptic problems in nonsmooth domains (English)
Author: Bochniak, M.
Author: Sändig, A.-M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 245-254
Summary lang: English
.
Category: math
.
Summary: We consider a class of semilinear elliptic problems in two- and three-dimensional domains with conical points. We introduce Sobolev spaces with detached asymptotics generated by the asymptotical behaviour of solutions of corresponding linearized problems near conical boundary points. We show that the corresponding nonlinear operator acting between these spaces is Frechet differentiable. Applying the local invertibility theorem we prove that the solution of the semilinear problem has the same asymptotic behaviour near the conical points as the solution of the linearized problem if the norms of the given right hand sides are small enough. Estimates for the difference between the solution of the semilinear and of the linearized problem are derived. (English)
Keyword: semilinear elliptic problems
Keyword: spaces with detached asymptotics
Keyword: asymptotic behaviour near conical points
MSC: 35A07
MSC: 35B65
MSC: 35C20
MSC: 35J60
idZBL: Zbl 0937.35003
idMR: MR1780695
DOI: 10.21136/MB.1999.126247
.
Date available: 2009-09-24T21:37:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126247
.
Reference: [1] A. Azzam: Behaviour of solutions of Dirichlet problem for elliptic equations at a corner.Indian J. Pure Appl. Math. 10 (1979), 1453-1459. Zbl 0443.35021, MR 0551783
Reference: [2] H. Blum R. Rannacher: On the boundary value problem of the biharmonic operator on domains with angular corners.Math. Methods Appl. Sci. 2 (1980), 556-581. MR 0595625, 10.1002/mma.1670020416
Reference: [3] M. Borsuk D. Portnyagin: Barriers on cones for degenerate quasilinear elliptic operators.Electron. J. Differential Equations 11 (1998), 1-8. MR 1613596
Reference: [4] Ph. Ciarlet: Mathematical Elasticity I.North-Holland, Amsterdam, 1988. MR 0936420
Reference: [5] M. Dobrowolski: On quasilinear elliptic equations in domains with conical boundary points.J. Reine Angew. Math. 394 (1989), 186-195. Zbl 0655.35022, MR 0977441
Reference: [6] G. Dziuk: Das Verhalten von Lösungen semilinearer elliptischer Systeme an Ecken eines Gebietes.Math. Z. 159 (1978), 89-100. Zbl 0375.35025, MR 0481479, 10.1007/BF01174570
Reference: [7] M. Feistauer: Mathematical Methods in Fluid Dynamics.Longman, New York, 1993. Zbl 0819.76001, MR 1266627
Reference: [8] A. Friedman: Mathematics in Industrial Problems 2.Springer-Verlag, New York, 1989. MR 0968664
Reference: [9] A. Friedman: Mathematics in Industrial Problems 3.Springer-Verlag, New York, 1990. MR 0968664
Reference: [10] P. Grisvard: Elliptic Problems in Nonsmooth Domains.Pitman Publishing Inc., Boston, 1985. Zbl 0695.35060, MR 0775683
Reference: [11] V. A. Kondrat'ev: Boundary problems for elliptic equations in domains with conical or angular points.Trans. Moscow Math. Soc. 16 (1967), 209-292. Zbl 0194.13405, MR 0226187
Reference: [12] V. A. Kozlov V. G. Maz'ya: On the spectrum of an operator pencils generated by the Dirichlet problem in a cone.Mat. Sb. 73 (1992), 27-48. MR 1124101, 10.1070/SM1992v073n01ABEH002533
Reference: [13] V. A. Kozlov V. G. Maz'ya: On the spectrum of an operator pencils generated by the Neumann problem in a cone.St. Petersburg Math. J. 3 (1992), 333-353. MR 1137524
Reference: [14] V. A. Kozlov J. Rossmann: Singularities of solutions of elliptic boundary value problems near conical points.Math. Nachr. 170 (1994), 161-181. MR 1302373
Reference: [15] A. W. Leung: Systems of Nonlinear Partial Differential Equations.Kluwer, Dordrecht, 1989. Zbl 0691.35002, MR 1621827
Reference: [16] M. Marcus V. J. Mizel: Complete characterization of functions which act, via superposition, on Sobolev spaces.Trans. Amer. Math. Soc. 251 (1979), 187-218. MR 0531975, 10.1090/S0002-9947-1979-0531975-1
Reference: [17] V. G. Maz'ya B. A. Plamenevsky: On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points.Math. Nachr. 76 (1977), 29-60. MR 0601608
Reference: [18] V. G. Maz'ya B. A. Plamenevsky: Weighted spaces with nonhomogeneous norms and boundary value problems in domains with conical points.Amer. Math. Soc. Transl. 123 (1984), 89-107. 10.1090/trans2/123/03
Reference: [19] E. Miersemann: Asymptotic expansion of solutions of the Dirichlet problem for quasilinear elliptic equations of second order near a conical point.Math. Nachr. 135 (1988), 239-274. MR 0944231, 10.1002/mana.19881350120
Reference: [20] S. A. Nazarov: On the two-dimensional aperture problem for Navier-Stokes equations.C. R. Acad. Sci Paris, Sér. I Math. 323 (1996), 699-703. Zbl 0860.35096, MR 1411068
Reference: [21] S. A. Nazarov K. I. Piletskas: Asymptotics of the solution of the nonlinear Dirichlet problem having a strong singularity near a corner point.Math. USSR Izvestiya 25 (1985), 531-550. 10.1070/IM1985v025n03ABEH001305
Reference: [22] S. A. Nazarov B. A. Plamenevsky: Elliptic Problems in Domains with Piecewise Smooth Boundaries.Walter de Gruyter, Berlin, 1994. MR 1283387
Reference: [23] M. Orlt A.-M. Sändig: Regularity of viscous Navier-Stokes Flows in nonsmooth domains.Boundary Value Problems and Integral Equations in Nonsmooth Domains (M.Costabel, M.Dauge, S.Nicaise, eds.). Marcel Dekker Inc., 1995. MR 1301336
Reference: [24] L. Recke: Applications of the implicit function theorem to quasilinear elliptic boundary value problems with non-smooth data.Comm. Partial Differential Equations 20 (1995), 1457-1479. Zbl 0838.35044, MR 1349220, 10.1080/03605309508821140
Reference: [25] P. Tolksdorf: On the Dirichlet problem for quasilinear equations in domains with conical boundary points.Comm. Partial Differential Equations 8 (1983), 773-817. Zbl 0515.35024, MR 0700735, 10.1080/03605308308820285
Reference: [26] T. Valent: Boundary Value Problems of Finite Elasticity.Springer-Verlag, New York Inc., 1988. Zbl 0648.73019, MR 0917733
.

Files

Files Size Format View
MathBohem_124-1999-2_11.pdf 1.601Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo