Previous |  Up |  Next

Article

Title: Modular inequalities for the Hardy averaging operator (English)
Author: Heinig, Hans P.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 231-244
Summary lang: English
.
Category: math
.
Summary: If $P$ is the Hardy averaging operator - or some of its generalizations, then weighted modular inequalities of the form \int u \phi(Pf) \leq C\int v \phi(f) are established for a general class of functions $\phi$. Modular inequalities for the two- and higher dimensional Hardy averaging operator are also given. (English)
Keyword: Hardy inequality
Keyword: modular inequality
Keyword: weight functions
MSC: 26A33
MSC: 26D05
MSC: 26D15
MSC: 46E30
MSC: 46M35
idZBL: Zbl 0936.26006
idMR: MR1780694
DOI: 10.21136/MB.1999.126254
.
Date available: 2009-09-24T21:37:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126254
.
Reference: [1] Maria J. Carro, Hans Heinig: Modular inequalities for the Calderón operator.Tohoku Math. J. To appear. MR 1740541
Reference: [2] M. DeGuzmán: Real Variable Methods in Fourier analysis.Univ. Complutense de Madrid, Fac. Mat., 1977.
Reference: [3] P. Drábek H. P. Heinig A. Kufner: Higher dimensional Hardy inequality.Internat. Ser. Numer. Math. 123 (1997), 3-16. MR 1457264
Reference: [4] G. H. Hardy J. E. Littlewood G. Pólya: Inequalities.Cambridge, 1934. MR 0046395
Reference: [5] H. P. Heinig R. Kerman M. Krbec: Weighted exponential inequalities.Preprint, vol. 79, Math. Inst., Acad. Science, Praha, 1992, pp. 30. MR 1828685
Reference: [6] Hans P. Heinig, Qinsheng Lai: Weighted modular inequalities for Hardy-type operators on monotone functions.Preprint. MR 1756661
Reference: [7] Qinsheng Lai: Weighted modular inequalities for Hardy-type operators.J. London Math. Soc. To appear. MR 1710168
Reference: [8] N. Levinson: Generalizations of an inequality of Hardy.Duke J. Math. 31 (1964), 389-394. Zbl 0126.28101, MR 0171885, 10.1215/S0012-7094-64-03137-0
Reference: [9] B. Opic A. Kufner: Hardy type inequalities.Pitman Series 219, Harlow, 1990. MR 1069756
Reference: [10] B. Opic P. Gurka: Weighted inequalities for geometric means.Proc. Arner. Math. Soc. 120 (1994), no. 3, 771-779. MR 1169043, 10.1090/S0002-9939-1994-1169043-4
Reference: [11] E. Sawyer: Weighted inequalities for the two dimensional Hardy operator.Studia Math. 82 (1985), 1-16. Zbl 0585.42020, MR 0809769, 10.4064/sm-82-1-1-16
.

Files

Files Size Format View
MathBohem_124-1999-2_10.pdf 2.505Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo