| Title:
             | 
On a higher-order Hardy inequality (English) | 
| Author:
             | 
Edmunds, David E. | 
| Author:
             | 
Rákosník, Jiří | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Bohemica | 
| ISSN:
             | 
0862-7959 (print) | 
| ISSN:
             | 
2464-7136 (online) | 
| Volume:
             | 
124 | 
| Issue:
             | 
2 | 
| Year:
             | 
1999 | 
| Pages:
             | 
113-121 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The Hardy inequality $\int_\Omega|u(x)|^pd(x)^{-p}\dd x\le c\int_\Omega|\nabla u(x)|^p\dd x$ with $d(x)=\operatorname{dist}(x,\partial\Omega)$ holds for $u\in C^\infty_0(\Omega)$ if $\Omega\subset\Bbb R^n$ is an open set with a sufficiently smooth boundary and if $1<p<\infty$. P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$. (English) | 
| Keyword:
             | 
Hardy inequality | 
| Keyword:
             | 
capacity | 
| Keyword:
             | 
maximal function | 
| Keyword:
             | 
Sobolev space | 
| Keyword:
             | 
$p$-thick set | 
| MSC:
             | 
26D10 | 
| MSC:
             | 
31C15 | 
| MSC:
             | 
42B25 | 
| MSC:
             | 
46E35 | 
| idZBL:
             | 
Zbl 0936.31010 | 
| idMR:
             | 
MR1780685 | 
| DOI:
             | 
10.21136/MB.1999.126250 | 
| . | 
| Date available:
             | 
2009-09-24T21:36:01Z | 
| Last updated:
             | 
2020-07-29 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/126250 | 
| . | 
| Reference:
             | 
[1] D. R. Adams L. I. Hedberg: Function spaces and potential theory.Springer, Berlin, 1996. MR 1411441 | 
| Reference:
             | 
[2] D. E. Edmunds H. Triebel: Function spaces, entropy numbers and differential operators.Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. MR 1410258 | 
| Reference:
             | 
[3] D. Gilbarg N. S. Trudinger: Elliptic partial differential equations of second order.(2nd ed.), Springer, Berlin, 1983. MR 0737190 | 
| Reference:
             | 
[4] P. Hajlasz: Pointwise Hardy inequalities.Proc. Amer. Math. Soc. 127 (1999), 417-423. Zbl 0911.31005, MR 1458875, 10.1090/S0002-9939-99-04495-0 | 
| Reference:
             | 
[5] J. Heinonen T. Kilpeläinen O. Martio: Nonlinear potential theory of degenerate elliptic equations.Oxford Science Publications, Clarendon. Press, Oxford, 1993. MR 1207810 | 
| Reference:
             | 
[6] J. Kinnunen O. Martio: Hardy's inequalities for Sobolev functions.Math. Res. Lett. 4 (1997), no. 4, 489-500. MR 1470421, 10.4310/MRL.1997.v4.n4.a6 | 
| Reference:
             | 
[7] J. L. Lewis: Uniformly fat sets.Trans. Amer. Math. Soc. 308 (1988), no. 1, 177-196. Zbl 0668.31002, MR 0946438, 10.1090/S0002-9947-1988-0946438-4 | 
| Reference:
             | 
[8] V. G. Maz'ya: Sobolev spaces.Springer, Berlin, 1985. Zbl 0727.46017, MR 0817985 | 
| Reference:
             | 
[9] P. Mikkonen: On the Wolff potential and quasilinear elliptic equations involving measures.Ann. Acad. Sci.Fenn.Ser. A.I. Math, Dissertationes 104 (1996), 1-71. Zbl 0860.35041, MR 1386213 | 
| Reference:
             | 
[10] B. Opic A. Kufner: Hardy-type inequalities.Pitman Research Notes in Math. Series 219, Longman Sci. &Tech., Harlow, 1990. MR 1069756 | 
| Reference:
             | 
[11] E. M. Stein: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton, N.J., 1970. Zbl 0207.13501, MR 0290095 | 
| Reference:
             | 
[12] A. Wannebo: Hardy inequalities.Proc. Amer. Math. Soc. 109 (1990), no. 1, 85-95. Zbl 0715.26009, MR 1010807, 10.1090/S0002-9939-1990-1010807-1 | 
| . |