Previous |  Up |  Next

Article

Title: On a higher-order Hardy inequality (English)
Author: Edmunds, David E.
Author: Rákosník, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 113-121
Summary lang: English
.
Category: math
.
Summary: The Hardy inequality $\int_\Omega|u(x)|^pd(x)^{-p}\dd x\le c\int_\Omega|\nabla u(x)|^p\dd x$ with $d(x)=\operatorname{dist}(x,\partial\Omega)$ holds for $u\in C^\infty_0(\Omega)$ if $\Omega\subset\Bbb R^n$ is an open set with a sufficiently smooth boundary and if $1<p<\infty$. P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$. (English)
Keyword: Hardy inequality
Keyword: capacity
Keyword: maximal function
Keyword: Sobolev space
Keyword: $p$-thick set
MSC: 26D10
MSC: 31C15
MSC: 42B25
MSC: 46E35
idZBL: Zbl 0936.31010
idMR: MR1780685
DOI: 10.21136/MB.1999.126250
.
Date available: 2009-09-24T21:36:01Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126250
.
Reference: [1] D. R. Adams L. I. Hedberg: Function spaces and potential theory.Springer, Berlin, 1996. MR 1411441
Reference: [2] D. E. Edmunds H. Triebel: Function spaces, entropy numbers and differential operators.Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. MR 1410258
Reference: [3] D. Gilbarg N. S. Trudinger: Elliptic partial differential equations of second order.(2nd ed.), Springer, Berlin, 1983. MR 0737190
Reference: [4] P. Hajlasz: Pointwise Hardy inequalities.Proc. Amer. Math. Soc. 127 (1999), 417-423. Zbl 0911.31005, MR 1458875, 10.1090/S0002-9939-99-04495-0
Reference: [5] J. Heinonen T. Kilpeläinen O. Martio: Nonlinear potential theory of degenerate elliptic equations.Oxford Science Publications, Clarendon. Press, Oxford, 1993. MR 1207810
Reference: [6] J. Kinnunen O. Martio: Hardy's inequalities for Sobolev functions.Math. Res. Lett. 4 (1997), no. 4, 489-500. MR 1470421, 10.4310/MRL.1997.v4.n4.a6
Reference: [7] J. L. Lewis: Uniformly fat sets.Trans. Amer. Math. Soc. 308 (1988), no. 1, 177-196. Zbl 0668.31002, MR 0946438, 10.1090/S0002-9947-1988-0946438-4
Reference: [8] V. G. Maz'ya: Sobolev spaces.Springer, Berlin, 1985. Zbl 0727.46017, MR 0817985
Reference: [9] P. Mikkonen: On the Wolff potential and quasilinear elliptic equations involving measures.Ann. Acad. Sci.Fenn.Ser. A.I. Math, Dissertationes 104 (1996), 1-71. Zbl 0860.35041, MR 1386213
Reference: [10] B. Opic A. Kufner: Hardy-type inequalities.Pitman Research Notes in Math. Series 219, Longman Sci. &Tech., Harlow, 1990. MR 1069756
Reference: [11] E. M. Stein: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton, N.J., 1970. Zbl 0207.13501, MR 0290095
Reference: [12] A. Wannebo: Hardy inequalities.Proc. Amer. Math. Soc. 109 (1990), no. 1, 85-95. Zbl 0715.26009, MR 1010807, 10.1090/S0002-9939-1990-1010807-1
.

Files

Files Size Format View
MathBohem_124-1999-2_1.pdf 1.470Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo