Previous |  Up |  Next

Article

Title: Two separation criteria for second order ordinary or partial differential operators (English)
Author: Brown, R. C.
Author: Hinton, D. B.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 273-292
Summary lang: English
.
Category: math
.
Summary: We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in $\Bbb R^n$. Also, for symmetric second-order ordinary differential operators we show that $\limsup_{t\to c} (pq')'/q^2=\theta<2$ where $c$ is a singular point guarantees separation of $-(py')'+qy$ on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that $-\Delta y+qy$ is separated on its minimal domain if $q$ is superharmonic. For $n=1$ the criterion is used to give examples of a separation inequality holding on the domain of the minimal operator in the limit-circle case. (English)
Keyword: separation
Keyword: ordinary or partial differential operator
Keyword: limit-point
Keyword: essentially selfadjoint
MSC: 26D10
MSC: 34B05
MSC: 34C05
MSC: 34L05
MSC: 34L40
MSC: 35B45
MSC: 35P05
MSC: 47E05
MSC: 47F05
idZBL: Zbl 0937.34068
idMR: MR1780697
DOI: 10.21136/MB.1999.126251
.
Date available: 2009-09-24T21:37:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126251
.
Reference: [1] Atkinson F. V.: On some results of Everitt and Giertz.Proc. Royal Soc. Edinburg 71A (1972/3), 151-58. MR 0326045
Reference: [2] Brown R. C, Hinton D. B.: Suffîcient conditions for weighted inequalìties of sum form.J. Math. Anal. Appl. 112 (1985), 563-578. Zbl 0587.26011, MR 0813620, 10.1016/0022-247X(85)90263-X
Reference: [3] Brown R. C, Hinton D. B., Shaw M. F.: Some separation criteria and inequalities associated with linear second order differential operators.Preprint. Zbl 0982.34032, MR 1974789
Reference: [4] Coddington E. A., Levinson N.: Theory of ordinary differential equations.McGraw-Hill Book Company, New York, 1955. Zbl 0064.33002, MR 0069338
Reference: [5] Davies E. B.: Heat kernels and spectral theory.Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, U.K., 1989. Zbl 0699.35006, MR 0990239
Reference: [6] Dunford N., Schwartz J. T: Linear operators. Part II: Spectral theory.Interscience, New York, 1963. Zbl 0128.34803, MR 1009163
Reference: [7] Eastham M. S. P., Evans W. D., McLeod J. B.: The essential self-adjointness of Schrödinger-type operators.Arch. Rational Mech. Anal. 60 (1976), 185-204. Zbl 0326.35018, MR 0417564, 10.1007/BF00250679
Reference: [8] Evans W. D.: On the essential self-adjointness of powers of Schrödinger-type operators.Proc. Royal Soc. Edinburgh 79A (1977), 61-77. Zbl 0374.35014, MR 0481617
Reference: [9] Evans W. D., Zettl A.: Dirichlet and separation results for Schrödinger-type operators.Proc. Royal Soc. Edinburgh 80A (1978), 151-162. Zbl 0397.47022, MR 0529574
Reference: [10] Everitt W. N.: On the strong limit-point condition of second-order differential expressions.International Conference of Differential Equatioпs. (H. A. Antosiewicz, ed.), Proceedings of an international conference held at the University of Southern California, September 3-7, 1974, Academic Press, New York, 1974, pp. 287-306. MR 0435497
Reference: [11] Everitt W.N.: A note on the Dirichlet conditions for second order differential expressions.Can. J. Math. 28 (2) (1976), 312-320. MR 0430391, 10.4153/CJM-1976-033-3
Reference: [12] Everitt W. N., Giertz M.: Some properties of the domains of certain differential operators.Proc. London Math. Soc. (3) 23 (1971), 301-24. Zbl 0224.34018, MR 0289840
Reference: [13] Everitt W. N., Giertz M.: Some Іnequalities associated with the domains of ordinary differential operators.Math. Z. 126 (1972), 308-328. MR 0303001, 10.1007/BF01110336
Reference: [14] Everitt W.N., Giertz M.: On limit-point and separation criteria for linear differential expressions.Proceedings of the 1972 Equadiff Conference, Brno, 1972, pp. 31-41. MR 0367354
Reference: [15] Everitt W.N., Giertz M.: Inequalities and separation for certain ordinary differential operators.Proc. London Math. Soc 28 (3) (1974), 352-372. Zbl 0278.34009, MR 0342758
Reference: [16] Everitt W. N., Giertz M.: Inequalities and separation for Schrödinger type operators in $L_2 R^n$.Proc. Royal Soc. Edinburgh 79A (1977), 257-265. Zbl 0423.35043, MR 0491381
Reference: [17] Everitt W. N., Giertz M., Weidmann J.: Sorne remarks on a separation and limit-point criterion of second order ordinary differential expressions.Math. Ann. 200 (1973), 335-346. MR 0326047, 10.1007/BF01428264
Reference: [18] Jörgens K. T.: Wesentliche Selbstadjungiertheit singulärer elliptischer Differentialoperatoren zweiter Ordnung in $C_0^{\infty} (G)$.Math. Scand 15 (1964), 5-17. MR 0180755, 10.7146/math.scand.a-10722
Reference: [19] Kalf H.: Self-adjointness for strongly singular potentials with a $-|x|^2$ fall-off at infinity.Math. Z. 133 (1973), 249-255. Zbl 0266.35018, MR 0328308, 10.1007/BF01238041
Reference: [20] Kalf H., Schmincke U. W., Walter J., Wüst R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials.Proceedings of the 1974 Dundee Symposium. Lecture Notes in Mathematics. vol. 448, Springer-Verlag, Berlin, 1975, pp. 182-226. MR 0397192
Reference: [21] Kato T.: Schrödinger operators with singular potentials.Israel J. Math., 135-148. Zbl 0246.35025, MR 0333833
Reference: [22] Kato T., Read, T, Zettl A.: The deficiency index problem for powers of differential operators.Lecture Notes in Mathematics, vol. 621, Springer-Verlag, New York, 1977.
Reference: [23] Knowles I.: On essential self-adjointness for Schrödinger operators with wildly oscillationg potentials.J. Math. Anal. Appl. 66 (1978), 574-585. MR 0517747, 10.1016/0022-247X(78)90254-8
Reference: [24] Naimark M. A.: Linear Differential Operators. Part II.Frederick Ungar, New York, 1968. Zbl 0227.34020, MR 0262880
Reference: [25] Opic B., Kufner A.: Hardy-type inequalities.Longman Scientific and Technical, Harlow, Essex, UK, 1990. Zbl 0698.26007, MR 1069756
Reference: [26] Read T. T.: A limit-point criterion for expressions with intermittently positive coefficients.J. London Math. Soc. (2) 15, 271-276. Zbl 0406.34037, MR 0437844
Reference: [27] Simon B.: Essential self-adjointness of Schrödinger operators with positive potentials.Math. Ann. 201 (1973), 211-220. Zbl 0234.47027, MR 0337215, 10.1007/BF01427943
.

Files

Files Size Format View
MathBohem_124-1999-2_13.pdf 3.520Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo