Previous |  Up |  Next

Article

Title: On maximal overdetermined Hardy's inequality of second order on a finite interval (English)
Author: Nasyrova, Maria
Author: Stepanov, Vladimir
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 293-302
Summary lang: English
.
Category: math
.
Summary: A characterization of the weighted Hardy inequality \left\| Fu \right\| _2 \le C \left\| F"v \right\| _2,\^^MF(0)=F'(0)=F(1)=F'(1)=0 is given. (English)
Keyword: weighted Hardy’s inequality
MSC: 26D10
MSC: 34B05
MSC: 46N20
idZBL: Zbl 0936.26010
idMR: MR1780698
DOI: 10.21136/MB.1999.126245
.
Date available: 2009-09-24T21:38:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126245
.
Reference: [1] Drábek P., Kufner A.: The Hardy inequalities and Birkhoff interpolation.Bayreuther Math. Schriften 47 (1994), 99-104. MR 1285205
Reference: [2] Gurka P.: Generalized Hardy inequalities for functions vanishing on both ends of the interval.Preprint, 1987.
Reference: [3] Edmunds D. E., Evans W. D., Harris D. J.: Approximation numbers of certain Volterra integral operators.J. London Math. Soc., II. Ser. 37 (1988), 471-489. Zbl 0658.47049, MR 0939123, 10.1112/jlms/s2-37.3.471
Reference: [4] Edmunds D. E., Stepanov V. D.: The measure of non-compactness and approximation numbers of certain Volterra integral operators.Math. Ann. 298 (1994), 41-66. Zbl 0788.45013, MR 1252816, 10.1007/BF01459724
Reference: [5] Heinig H. P., Kufner A.: Hardy's inequality for higher order derivatives.Proc. Steklov Inst. Math. 192 (1992), 113-121. MR 1097892
Reference: [6] Kufner A.: Higher order Hardy inequalities.Bayreuther Math. Schriften 44 (1993), 105-146. Zbl 0802.26006, MR 1224775
Reference: [7] Kufner A., Leinfelder H.: On overdetermined Hardy inequalities.Preprint, 1998. Zbl 0936.26009, MR 1645446
Reference: [8] Kufner A., Simader C. G.: Hardy inequalities for overdetermined classes of functions.Z. Anal. Anwend. 16 (1997), no. 2, 387-403. Zbl 0895.26003, MR 1459965, 10.4171/ZAA/769
Reference: [9] Kufner A., Sinnamon G.: Overdetermined Hardy inequalities.J. Math. Anal. Appl. 213 (1997), 468-486. Zbl 0895.26004, MR 1470864, 10.1006/jmaa.1997.5551
Reference: [10] Kufner A., Wannebo A.: Some remarks on the Hardy inequality for higher order derivatives.General Inequalities VI. Internat. Series of Numer. Math. Vol. 103, Birkhäuser Verlag, Basel, 1992, pp. 33-48. Zbl 0766.26014, MR 1212994
Reference: [11] Nasyrova M., Stepanov V.: On weighted Hardy inequalities on semiaxis for functions vanishing at the endpoints.J. InequaL Appl. 1 (1997), 223-238. Zbl 0894.26007, MR 1731339
Reference: [12] Nasyrova M.: Overdetermined weighted Hardy inequalities on semiaxis.Proceedings of Dehli conference. To appear. Zbl 1006.26014, MR 1974802
Reference: [13] Opic B., Kufner A.: Hardy-type Inequalities.Pitman Research Notes in Math., Series 219, Longman Sci&Tech., Harlow, 1990. Zbl 0698.26007, MR 1069756
Reference: [14] Rudin W.: Functional Analysis.McGraw-Hill Book Company, New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [15] Sinnamon G.: Kufner's conjecture for higher order Hardy inequalities.Real Analysis Exchange, 21 (1995/96), 590-603. Zbl 0879.26052, MR 1407271, 10.2307/44152669
Reference: [16] Stepanov V. D.: Weighted inequalities for a class of Volterra convolution operators.J. London Math. Soc. (2) 45 (1992), 232-242. Zbl 0703.42011, MR 1171551, 10.1112/jlms/s2-45.2.232
Reference: [17] Stepanov V. D.: Weighted norm inequalities of Hardy type for a class of integral operators.J. London Math. Soc. (2) 50 (1994), 105-120. Zbl 0837.26012, MR 1277757, 10.1112/jlms/50.1.105
.

Files

Files Size Format View
MathBohem_124-1999-2_14.pdf 2.283Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo