Previous |  Up |  Next

Article

Title: On some geometric properties of certain Köthe sequence spaces (English)
Author: Cui, Yunan
Author: Hudzik, Henryk
Author: Zhang, Tao
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 303-314
Summary lang: English
.
Category: math
.
Summary: It is proved that if a Kothe sequence space $X$ is monotone complete and has the weakly convergent sequence coefficient WCS$(X)>1$, then $X$ is order continuous. It is shown that a weakly sequentially complete Kothe sequence space $X$ is compactly locally uniformly rotund if and only if the norm in $X$ is equi-absolutely continuous. The dual of the product space $(\bigoplus\nolimits_{i=1}^{\infty}X_i)_{\Phi}$ of a sequence of Banach spaces $(X_i)_{i=1}^{\infty}$, which is built by using an Orlicz function $\Phi$ satisfying the $\Delta_2$-condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function $\Phi$ and any finite system $X_1,\dots,X_n$ of Banach spaces, we have $\mathop WCS((\bigoplus\nolimits_{i=1}^nX_i)_{\Phi})=\min\{\mathop WCS(X_i) i=1,\dots,n\}$ and that if $\Phi$ does not satisfy the $\Delta_2$-condition, then WCS$((\bigoplus\nolimits_{i=1}^{\infty}X_i) _{\Phi})=1$ for any infinite sequence $(X_i)$ of Banach spaces. (English)
Keyword: Köthe sequence space
Keyword: weakly convergent sequence coefficient
Keyword: order continuity of the norm
Keyword: absolute continuity of the norm
Keyword: compact local uniform rotundity
Keyword: Orlicz sequence space
Keyword: Luxemburg norm
Keyword: Orlicz norm
Keyword: dual space
Keyword: product space
MSC: 46A45
MSC: 46B20
MSC: 46B25
MSC: 46B45
MSC: 46E20
MSC: 46E40
idZBL: Zbl 0941.46005
idMR: MR1780699
DOI: 10.21136/MB.1999.126253
.
Date available: 2009-09-24T21:38:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126253
.
Reference: [1] J. M. Ayerbe T. Dominguez Benavides G. Lopez Acedo: Compactness Conditions in Metric Fixed Point Theory.OTAA, vol. 99, Birkhäuser, Basel, 1997.
Reference: [2] M. S. Brodskij D. P. Milman: On the center of convex set.Dokl. Akad. Nauk 59 (1948), 837-840. (In Russian.) MR 0024073
Reference: [3] W. I. Bynum: Normal structure coefficient for Banach spaces.Pacific J. Math. 86 (1980), 427-436. MR 0590555, 10.2140/pjm.1980.86.427
Reference: [4] S. T. Chen: Geometry of Orlicz Spaces.Dissertationes Math. 356, 1996. Zbl 1089.46500, MR 1410390
Reference: [5] T. Dominguez Benavides: Weak uniform normal structure in direct sum spaces.Studia Math. 103 (1992), no. 3, 283-290. Zbl 0810.46015, MR 1202012, 10.4064/sm-103-3-283-290
Reference: [6] P. Foralewski H. Hudzik: Some basic properties of generalized Calderón-Lozanovskij spaces.Collect. Math. 48 (1997), no. 4-6. 523-538. MR 1602584
Reference: [7] K. Goebel W. Kirk: Topics in Metrix Fixed Point Theory.Cambridge University Press, Cambridge, 1991. MR 1074005
Reference: [8] A. Kamińska: Flat Orlicz-Musielak sequence spaces.Bull. Polish Acad. Sci. Math. 30 (1982), no. 7-8, 347-352. MR 0707748
Reference: [9] L. V. Kantorovich G. P. Akilov: Functional Analysis.Nauka, Moscow, 1977. (In Russian.) MR 0511615
Reference: [10] T. Landes: Permanence properties of normal structure.Pacific J. Math. 110 (1984), 125-143. Zbl 0534.46015, MR 0722744, 10.2140/pjm.1984.110.125
Reference: [11] T. C. Lin: On normal structure coefficient and the bounded sequence coefficient.Proc. Amer. Math. Soc. 88 (1983), 262-267. MR 0695255, 10.1090/S0002-9939-1983-0695255-2
Reference: [12] J. Lindenstrauss L. Tzafriri: Classical Banach Spaces I.Springer-Verlag, Berlin, 1977. MR 0500056
Reference: [13] W. A. J. Luxemburg: Banach Function Spaces.Thesis, Delft, 1955. Zbl 0068.09204, MR 0072440
Reference: [14] L. Maligranda: Orlicz Spaces and Interpolation.Seminars in Math. 5, Campinas, 1989. Zbl 0874.46022, MR 2264389
Reference: [15] E. Maluta: Uniformly normal structure and related coefficients.Pacific J. Math. 111 (1984), 357-369. Zbl 0495.46012, MR 0734861, 10.2140/pjm.1984.111.357
Reference: [16] J. Musielak: Orlicz Spaces and Modular Spaces.Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 0724434
Reference: [17] B. B. Panda O. P. Kapoor: A generalization of local uniform convexity of the norm.J. Math. Anal. Appl. 52 (1975), 300-308. MR 0380365, 10.1016/0022-247X(75)90098-0
Reference: [18] B. Prus: On Bynum's fixed point theorem.Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. Zbl 0724.46020, MR 1076471
Reference: [19] M. M. Rao Z. D. Ren: Theory of Orlicz Spaces.Marcel Dekker Inc., New York, 1991. MR 1113700
Reference: [20] A. E. Taylor D. C. Lay: Introduction to Functional Analysis.John Wiley & Sons, New York (second edition), 1980. MR 0564653
Reference: [21] G. L. Zhang: Weakly convergent sequence coefficient of product space.Proc. Amer. Math. Soc. 117 (1993), no. 3, 637-643. Zbl 0787.46021, MR 1152993, 10.1090/S0002-9939-1993-1152993-1
.

Files

Files Size Format View
MathBohem_124-1999-2_15.pdf 2.749Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo