Title:
|
Positive solutions of critical quasilinear elliptic equations in $R \sp N$ (English) |
Author:
|
Binding, Paul A. |
Author:
|
Drábek, Pavel |
Author:
|
Huang, Yin Xi |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
124 |
Issue:
|
2 |
Year:
|
1999 |
Pages:
|
149-166 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the existence of positive solutions of
-\Delta_pu=\lambda g(x)|u|^{p-2}u+\alpha h(x)|u|^{q-2}u+f(x)|u|^{p^*-2}u\eqno(1)
in $\Bbb R^N$, where $\lambda, \alpha\in\Bbb R$, $1<p<N$, $p^*=Np/(N-p)$, the critical Sobolev exponent, and $1<q<p^*$, $q\ne p$. Let $\lambda_1^+>0$ be the principal eigenvalue of
-\Delta_pu=\lambda g(x)|u|^{p-2}u \quad\text{in} \Rn, \qquad\int_{\Rn} g(x)|u|^p>0, \eqno(2)
with $u_1^+>0$ the associated eigenfunction. We prove that, if $\int_{\Bbb R^N}f|u_1^+|^{p^*}<0$, $\int_{\Bbb R^N}h|u_1^+|^q>0$ if $1<q<p$ and $\int_{\Bbb R^N}h|u_1^+|^q<0$ if $p<q<p^*$, then there exist $\lambda^*>\lambda_1^+$ and $\alpha^*>0$, such that for $\lambda\in[\lambda_1^+, \lambda^*)$ and $\alpha\in[0, \alpha^*)$, (1) has at least one positive solution. (English) |
Keyword:
|
positive solutions |
Keyword:
|
critical exponent |
Keyword:
|
the $p$-Laplacian |
MSC:
|
35B33 |
MSC:
|
35J70 |
MSC:
|
35P30 |
MSC:
|
47J30 |
MSC:
|
58E05 |
idZBL:
|
Zbl 0937.35075 |
idMR:
|
MR1780688 |
DOI:
|
10.21136/MB.1999.126255 |
. |
Date available:
|
2009-09-24T21:36:30Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126255 |
. |
Reference:
|
[1] C. O. Alves: Multiple positive solutions for equations involving critical Sobolev exponent in $R^N$.Electron. J.Differential Equations 13 (1997), 1-10. MR 1461975 |
Reference:
|
[2] C. O. Alves J. V. Gonçalves O. H. Miyagaki: Remarks on multiplicity of positive solutions for nonlinear elliptic equations in $R^N$ with critical growth.Preprint. MR 1720590 |
Reference:
|
[3] H. Brezis L. Nirenberg: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm. Pure Appl. Math. 36 (1983), 437-477. MR 0709644, 10.1002/cpa.3160360405 |
Reference:
|
[4] P. Drábek Y. X. Huang: Multiple positive solutions of quasilinear elliptic equations in $R^N$.Nonlinear Anal. To appear. MR 1691021 |
Reference:
|
[5] P. Drábek Y. X. Huang: Multiplicity of positive solutions for some quasilinear elliptic equation in $R^N$ with critical Sobolev exponent.J. Differential Equations 140 (1997), 106-132. MR 1473856, 10.1006/jdeq.1997.3306 |
Reference:
|
[6] P. Drábek Y. X. Huang: Bifurcation problems for the p-Laplacian in $R^N$.Trans. Amer. Math. Soc. 349 (1997), 171-188. MR 1390979, 10.1090/S0002-9947-97-01788-1 |
Reference:
|
[7] J. V. Gonçalves C. O. Alves: Existence of positive solutions for m-Laplacian equations in $R^N$ involving critical Sobolev exponents.Nonlinear Anal. 32 (1998), 53-70. MR 1491613 |
Reference:
|
[8] P. L. Lions: The concentration-compactness principle in the calculus of variations, the limit case, Part I, II.Rev. Mat. Iberoamericana 1 (1985), no. 2, 3, 109-145, 45-121. MR 0850686 |
Reference:
|
[9] J. Mawhin M. Willem: Critical Point Theory and Hamiltonian Systems.Appl. Math. Sci. Vol. 74, Springer-Verlag, New York, 1989. MR 0982267, 10.1007/978-1-4757-2061-7 |
Reference:
|
[10] E. S. Noussair C. A. Swanson: Multiple finite energy solutions of critical semilinear field equations.J. Math. Anal. Appl. 195 (1995), 278-293. MR 1352823, 10.1006/jmaa.1995.1355 |
Reference:
|
[11] E. S. Noussair C. A. Swanson J. Yang: Quasilmear elliptic problems with critical exponents.Nonlinear Anal. 20 (1993), 285-301. MR 1202205, 10.1016/0362-546X(93)90164-N |
Reference:
|
[12] C. A. Swanson L. S. Yu: Critical p-Laplacian problems in $R^N$.Ann. Mat. Pura Appl. 169 (1995), 233-250. MR 1378476, 10.1007/BF01759355 |
Reference:
|
[13] G. Tarantello: On nonhomogeneous eiliptic equations involving critical Sobolev exponent.Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281-304. MR 1168304, 10.1016/S0294-1449(16)30238-4 |
Reference:
|
[14] J. Yang: Positive solutions of quasilinear elliptic obstacle problems with critical exponents.Nonlinear Anal. 25 (1995), 1283-1306. Zbl 0838.49008, MR 1355723, 10.1016/0362-546X(94)00247-F |
. |