Previous |  Up |  Next

Article

Title: On pointwise interpolation inequalities for derivatives (English)
Author: Maz'ya, Vladimir
Author: Shaposhnikova, Tatyana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 2
Year: 1999
Pages: 131-148
Summary lang: English
.
Category: math
.
Summary: Pointwise interpolation inequalities, in particular, \left\vert\nabla_ku(x)\right\vert\leq c\left({\cal M}u(x)\right) ^{1-k/m} \left({\cal M}\nabla_mu(x)\right)^{k/m}, k<m, and |I_zf(x)|\leq c ({\cal M}I_{\zeta}f(x))^{\mathop Re z/\mathop Re \zeta}({\cal M}f(x))^{1-\mathop Re z/\mathop Re \zeta}, 0<\mathop Re z<\mathop Re\zeta<n, where $\nabla_k$ is the gradient of order $k$, ${\cal M}$ is the Hardy-Littlewood maximal operator, and $I_z$ is the Riesz potential of order $z$, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M(W_p^m({\Bbb R}^n)\to W_p^l({\Bbb R}^n))$ is described. (English)
Keyword: Landau inequality
Keyword: interpolation inequalities
Keyword: Hardy-Littlewood maximal operator
Keyword: Gagliardo-Nirenberg inequality
Keyword: Sobolev multipliers
MSC: 26D10
MSC: 42B25
MSC: 46E25
MSC: 46E35
idZBL: Zbl 0936.26008
idMR: MR1780687
DOI: 10.21136/MB.1999.126252
.
Date available: 2009-09-24T21:36:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126252
.
Reference: [1] E. Landau: Einige Ungleichungen für zweimal differenzierbare Funktionen.Proc. London Math. Soc. 13 (1913), 43-49.
Reference: [2] V. Maz'ya T. Shaposhnikova: Jacques Hadamard, a universal mathematician.American Mathematical Society and London Mathematical Society, Providence, RI, 1998.
Reference: [3] L. Nirenberg F. Trèves: Solvability of a first order linear partial differential equation.Comm. Pure Appl. Math. 16 (1963), 331-351. MR 0163045, 10.1002/cpa.3160160308
Reference: [4] P. D. Lax L. Nirenberg: On solvability for difference schemes, a sharp form of Gårding's inequality.Comm. Pure Appl. Math. 19 (1966), 473-492. MR 0206534, 10.1002/cpa.3160190409
Reference: [5] V. Maz'ya A. Kufner: Variations on the theme of the inequality $(f')^2 \leq 2 f \sup |f''|$.Manuscripta Math. 56 (1986), 89-104. MR 0846988, 10.1007/BF01171035
Reference: [6] D. R. Adams L. I. Hedberg: Function spaces and potential theory.Springer-Verlag, Berlin, 1996. MR 1411441
Reference: [7] V. Maz'ya S. Poborchi: Differentiable functions on bad domains.World Scientific Publishing, Singapore, 1997. MR 1643072
Reference: [8] E. Gagliardo: Ulteriori propietà di alcune classi di funzioni on più variabli.Ric. Mat. 8 (1) (1959), 24-51. MR 0109295
Reference: [9] L. Nirenberg: On elliptic partial differential equations: Lecture II.Ann. Sc. Norm. Sup. Pisa, Ser. 3 13 (1959), 115-162. MR 0109940
Reference: [10] L. I. Hedberg: On certain convolution inequalities.Proc. Amer. Math. Soc. 36 (1972), 505-510. MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [11] V. Maz'ya T. Shaposhnikova: Theory of multipliers in spaces of differentiable functions.Pitman, London, 1985.
Reference: [12] V. Maz'ya I. Verbitsky: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers.Ark. Mat. 33 (1995), 81-115. MR 1340271, 10.1007/BF02559606
.

Files

Files Size Format View
MathBohem_124-1999-2_3.pdf 2.752Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo