Previous |  Up |  Next

Article

Title: A tree as a finite nonempty set with a binary operation (English)
Author: Nebeský, Ladislav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 125
Issue: 4
Year: 2000
Pages: 455-458
Summary lang: English
.
Category: math
.
Summary: A (finite) acyclic connected graph is called a tree. Let $W$ be a finite nonempty set, and let $ H(W)$ be the set of all trees $T$ with the property that $W$ is the vertex set of $T$. We will find a one-to-one correspondence between $ H(W)$ and the set of all binary operations on $W$ which satisfy a certain set of three axioms (stated in this note). (English)
Keyword: trees
Keyword: geodetic graphs
Keyword: binary operations
MSC: 05C05
MSC: 05C75
MSC: 20N02
idZBL: Zbl 0963.05032
idMR: MR1802293
DOI: 10.21136/MB.2000.126275
.
Date available: 2009-09-24T21:45:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126275
.
Reference: [1] G. Chartrand L. Lesniak: Graphs & Digraphs.Third edition. Chapman & Hall, London, 1996. MR 1408678
Reference: [2] L. Nebeský: An algebraic characterization of geodetic graphs.Czechoslovak Math. J. 48 (1998), 701-710. MR 1658245, 10.1023/A:1022435605919
.

Files

Files Size Format View
MathBohem_125-2000-4_4.pdf 945.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo