Previous |  Up |  Next

Article

Title: The Fubini Theorem and Convolution of Vector-Valued Measures (English)
Author: Duchoň, Miloslav
Language: English
Journal: Matematický časopis
ISSN: 0025-5173
Volume: 23
Issue: 2
Year: 1973
Pages: 170-178
.
Category: math
.
MSC: 28A35
MSC: 28A45
MSC: 28B05
idZBL: Zbl 0268.28005
idMR: MR0335739
.
Date available: 2009-09-25T08:23:25Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/126820
.
Reference: [1] BERBERIAN S. K.: Measure and integration.New Yoгk 1965. Zbl 0126.08001, MR 0183839
Reference: [2] BERBERIAN S. K.: Counterexamples in Haar measuгe.Amer. Math. Monthly 73, 1966, 135-140. MR 0195984
Reference: [3] de LEEUW K.: The Fubini theorem and convolution formula for regular measures.Math. Scand. 11, 1962, 117-122. Zbl 0178.05003, MR 0195983
Reference: [4] DINCULEANU N.: Vector measures.Berlin 1966. Zbl 0142.10502, MR 0206190
Reference: [5] DUCHOŇ M.: A convolution algebra of vector-valued measures on compact abelian semigroup.Rev. Roum. Math. Pures et Appl. 16, 1971, 1467-1476. MR 0310184
Reference: [6] DUCHOŇ M.: On the projective tensor product of vector-valued measures II.Mat. časop. 19, 1969, 228-234. MR 0308356
Reference: [7] DUCHOŇ M.: On the tensor product of vector measures in locally compact spaces.Mat. časop. 19, 1969, 324-329. MR 0310182
Reference: [8] HEWITT E., ROSS K. A.: Abstract harmonic analysis I.Berlin 1963.
Reference: [9] STROMBERG K.: A note on thе convolution of regular measures.Math. Scand. 7, 1959, 347-352. MR 0114889
.

Files

Files Size Format View
MathSlov_23-1973-2_11.pdf 938.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo