Previous |  Up |  Next

Article

Title: Lie group extensions associated to projective modules of continuous inverse algebras (English)
Author: Neeb, Karl-Hermann
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 465-489
Summary lang: English
.
Category: math
.
Summary: We call a unital locally convex algebra $A$ a continuous inverse algebra if its unit group $A^\times $ is open and inversion is a continuous map. For any smooth action of a, possibly infinite-dimensional, connected Lie group $G$ on a continuous inverse algebra $A$ by automorphisms and any finitely generated projective right $A$-module $E$, we construct a Lie group extension $\widehat{G}$ of $G$ by the group $\operatorname{GL}_A(E)$ of automorphisms of the $A$-module $E$. This Lie group extension is a “non-commutative” version of the group $\operatorname{Aut}({\mathbb{V}})$ of automorphism of a vector bundle over a compact manifold $M$, which arises for $G = \operatorname{Diff}(M)$, $A = C^\infty (M,{\mathbb{C}})$ and $E = \Gamma {\mathbb{V}}$. We also identify the Lie algebra $\widehat{\mathfrak{g}}$ of $\widehat{G}$ and explain how it is related to connections of the $A$-module $E$. (English)
Keyword: continuous inverse algebra
Keyword: infinite dimensional Lie group
Keyword: vector bundle
Keyword: projective module
Keyword: semilinear automorphism
Keyword: covariant derivative
Keyword: connection
MSC: 22E65
MSC: 58B34
idZBL: Zbl 1212.22009
idMR: MR2501579
.
Date available: 2009-01-29T09:16:19Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127115
.
Reference: [1] Abbati, M. C., Cirelli, R., Mania, A., Michor, P. W.: The Lie group of automorphisms of a principal bundle.J. Geom. Phys. 6 (2) (1989), 215–235. MR 1040392, 10.1016/0393-0440(89)90015-6
Reference: [2] Bkouche, R.: Idéaux mous d’un anneau commutatif. Applications aux anneaux de fonctions.C. R. Acad. Sci. Paris Sér. I Math. 260 (1965), 6496–6498. Zbl 0142.28901, MR 0177002
Reference: [3] Blackadar, B.: K-theory for operator algebras.Cambridge Univ. Press, 1998. Zbl 0913.46054, MR 1656031
Reference: [4] Bratteli, O., Elliot, G. A., Goodman, F. M., Jorgensen, P. E. T.: Smooth Lie group actions on non-commutative tori.Nonlinearity 2 (1989), 271–286. MR 0994093, 10.1088/0951-7715/2/2/004
Reference: [5] Connes, A.: Non-commutative Geometry.Academic Press, 1994.
Reference: [6] Dubois-Violette, M.: Dérivations et calcul différentiel non-commutatif.C. R. Acad. Sci. Paris Sér. I Math. 307 (8) (1988), 403–408. Zbl 0661.17012, MR 0965807
Reference: [7] Dubois-Violette, M.: Noncommutative differential geometry, quantum mechanics and gauge theory. Differential geometric methods in theoretical physics.Lecture Notes in Physics, Springer Verlag 375 (1991), 13–24. MR 1134141, 10.1007/3-540-53763-5_42
Reference: [8] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras.J. Math. Phys. 31 (2) (1990), 316–322. Zbl 0704.53081, MR 1034167, 10.1063/1.528916
Reference: [9] Dubois-Violette, M., Michor, P. W.: Dérivations et calcul différentiel non commutatif. II.C. R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994), 927–931. Zbl 0829.16028, MR 1302791
Reference: [10] Elliott, G. A.: The diffeomorphism group of the irrational rotation $C^*$-algebra.C. R. Math. Acad. Sci. Soc. R. Can. 8 (5) (1986), 329–334. Zbl 0617.46068, MR 0859436
Reference: [11] Glöckner, H.: Algebras whose groups of units are Lie groups.Studia Math. 153 (2002), 147–177. Zbl 1009.22021, MR 1948922, 10.4064/sm153-2-4
Reference: [12] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups.Vol. I, Basic Theory and Main Examples, book in preparation.
Reference: [13] Grabowski, J.: Isomorphisms of algebras of smooth functions revisited.arXiv:math.DG/0310295v3. Zbl 1082.46020, MR 2161810
Reference: [14] Gracia-Bondia, J. M., Vasilly, J. C., Figueroa, H.: Elements of Non-commutative Geometry.Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001.
Reference: [15] Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und $\Psi $-Algebren.Math. Ann. 269 (1984), 22–71. Zbl 0661.47037, MR 0756775, 10.1007/BF01455995
Reference: [16] Harris, B.: Group cohomology classes with differential form coefficients.Algebraic K-theory, vol. 551, (Proc. Conf. Northwestern Univ., Evanston, Illinois), Lecture Notes in Math., Springer-Verlag, 1976, pp. 278–282. Zbl 0405.20043, MR 0498570, 10.1007/BFb0080008
Reference: [17] Harris, L. A., Kaup, W.: Linear algebraic groups in infinite dimensions.Illinois J. Math. 21 (1977), 666–674. Zbl 0385.22011, MR 0460551
Reference: [18] Jurčo, B., Schupp, P., Wess, J.: Nonabelian noncommutative gauge theory via noncommutative extra dimensions.Nuclear Phys. B 604 (1-2) (2001), 148–180. Zbl 0983.81054, MR 1840858
Reference: [19] Kosmann, Y.: On Lie transformation groups and the covariance of differential operators.Math. Phys. Appl. Math., In: Differential geometry and relativity, Reidel, Dordrecht, vol. 3, 1976, pp. 75–89. Zbl 0344.58020, MR 0438405
Reference: [20] Kriegl, A., Michor, P. W.: The convenient setting of global analysis.Math. Surveys Monogr. 53 (1997), 618 pp. Zbl 0889.58001, MR 1471480
Reference: [21] Madore, J., Masson, T., Mourad, J.: Linear connections on matrix geometries.Classical Quantum Gravity 12 (1995), 1429–1440. Zbl 0824.58008, MR 1344279, 10.1088/0264-9381/12/6/009
Reference: [22] Milnor, J.: Remarks on infinite-dimensional Lie groups.Relativité, groupes et topologie II, (Les Houches, 1983), North Holland, Amsterdam (DeWitt, B. and Stora, R. eds.), 1984. Zbl 0594.22009, MR 0830252
Reference: [23] Mrčun, J.: On isomorphisms of algebras of smooth functions.arXiv:math.DG/0309179v4. MR 2159792
Reference: [24] Neeb, K.-H.: Infinite-dimensional Lie groups and their representations.Lie Theory (Lie Algebras and Representations, Progress in Math., Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, ed.), 2004, pp. 213–328. MR 2042690
Reference: [25] Neeb, K.-H.: Towards a Lie theory of locally convex groups.Japan. J. Math. 3rd ser. 1 (2) (2006), 291–468. Zbl 1161.22012, MR 2261066, 10.1007/s11537-006-0606-y
Reference: [26] Neeb, K.-H.: Nonabelian extensions of infinite-dimensional Lie groups.Ann. Inst. Fourier 56 (2007), 209–271. MR 2316238, 10.5802/aif.2257
Reference: [27] Neeb, K.-H., Wagemann, F.: Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds.Geom. Dedicata 134 (2008), 17–60. Zbl 1143.22016, MR 2399649, 10.1007/s10711-008-9244-2
Reference: [28] Rudin, W.: Functional Analysis.McGraw Hill, 1973. Zbl 0253.46001, MR 0365062
Reference: [29] Schupp, P.: Non-Abelian gauge theory on non-commutative spaces.Internat. Europhysics Conference on HEP, arXiv:hep-th/0111083, 2001. MR 1832107
Reference: [30] Swan, R. G.: Vector bundles and projective modules.Trans. Amer. Math. Soc. 105 (1962), 264–277. Zbl 0109.41601, MR 0143225, 10.1090/S0002-9947-1962-0143225-6
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_10.pdf 630.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo