Previous |  Up |  Next

Article

Title: Remarks on Special Symplectic Connections (English)
Author: Panák, Martin
Author: Žádník, Vojtěch
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 491-510
Summary lang: English
.
Category: math
.
Summary: The notion of special symplectic connections is closely related to parabolic contact geometries due to the work of M. Cahen and L. Schwachhöfer. We remind their characterization and reinterpret the result in terms of generalized Weyl connections. The aim of this paper is to provide an alternative and more explicit construction of special symplectic connections of three types from the list. This is done by pulling back an ambient linear connection from the total space of a natural scale bundle over the homogeneous model of the corresponding parabolic contact structure. (English)
Keyword: special symplectic connections
Keyword: parabolic contact geometries
Keyword: Weyl structures and connections
MSC: 53B15
MSC: 53C15
MSC: 53D15
idZBL: Zbl 1212.53113
idMR: MR2501580
.
Date available: 2009-01-29T09:16:23Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127116
.
Reference: [1] Bryant, R.: Bochner–Kähler metrics.J. Amer. Math. Soc. 14 (2) (2001), 623–715. Zbl 1006.53019, MR 1824987, 10.1090/S0894-0347-01-00366-6
Reference: [2] Cahen, M., Gutt, S., Schwachhöfer, L.: Construction of Ricci–type connections by reduction and induction.The breadth of symplectic and Poisson geometry, 2005, pp. 41–57. Zbl 1079.53117, MR 2103002
Reference: [3] Cahen, M., Schwachhöfer, L.: Special symplectic connections.eprint arXiv:math/0402221v2. MR 2232865
Reference: [4] Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries.J. Reine Angew. Math. 582 (2005), 143–172. Zbl 1075.53022, MR 2139714, 10.1515/crll.2005.2005.582.143
Reference: [5] Čap, A., Gover, A. R.: Tractor calculi for parabolic geometries.Trans. Amer. Math. Soc. 354 (2002), 1511–1548. Zbl 0997.53016, MR 1873017, 10.1090/S0002-9947-01-02909-9
Reference: [6] Čap, A., Slovák, J.: Parabolic Geometries.to appear in Math. Surveys Monogr., 2008.
Reference: [7] Čap, A., Slovák, J.: Weyl Structures for Parabolic Geometries.Math. Scand. 93 (2003), 53–90. Zbl 1076.53029, MR 1997873
Reference: [8] Chu, B. Y.: Symplectic homogeneous space.Trans. Amer. Math. Soc. 197 (1974), 145–159. MR 0342642, 10.1090/S0002-9947-1974-0342642-7
Reference: [9] Fox, D. J.: Contact projective structures.Indiana Univ. Math. J. 54 (6) (2005), 1547–1598. Zbl 1093.53083, MR 2189678
Reference: [10] Jacobowitz, H.: An introduction to CR structures.Math. Surveys Monogr. 32 (1990). Zbl 0712.32001
Reference: [11] Panák, M., Schwachhöfer, L.: Bochner–Kaehler metrics and connections of Ricci–type.Proceedings of the 10th Conference on Differential Geometry and its Applications, Olomouc 2007, World Scientific, 2008, pp. 339–352. Zbl 1162.53324, MR 2462805
Reference: [12] Pikulin, S. V., Tevelev, E. A.: Invariant linear connections on homogeneous symplectic varieties.Transform. Groups 6 (2) (2001), 193–198. Zbl 1009.22014, MR 1835673, 10.1007/BF01597137
Reference: [13] Slovák, J.: Parabolic geometries.Tech. report, IGA preprint 97/11, Univ. of Adelaide, 1997.
Reference: [14] Takeuchi, M.: Lagrangean contact structures on projective cotangent bundles.Osaka J. Math. 31 (1994), 837–860. Zbl 0830.53028, MR 1315010
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_11.pdf 580.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo