Previous |  Up |  Next

Article

Title: New sheaf theoretic methods in differential topology (English)
Author: Weiss, Michael
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 549-567
Summary lang: English
.
Category: math
.
Summary: The Mumford conjecture predicts the ring of rational characteristic classes for surface bundles with oriented connected fibers of large genus. The first proof in [11] relied on a number of well known but difficult theorems in differential topology. Most of these difficult ingredients have been eliminated in the years since then. This can be seen particularly in [7] which has a second proof of the Mumford conjecture, and in the work of Galatius [5] which is concerned mainly with a “graph” analogue of the Mumford conjecture. The newer proofs emphasize Tillmann’s theorem [23] as well as some sheaf-theoretic concepts and their relations with classifying spaces of categories. These notes are an overview of the shortest known proof, or more precisely, the shortest known reduction of the Mumford conjecture to the Harer-Ivanov stability theorems for the homology of mapping class groups. Some digressions on the theme of classifying spaces and sheaf theory are included for motivation. (English)
Keyword: surface bundle
Keyword: sheaf
Keyword: classifying space
Keyword: homological stability
MSC: 57R19
MSC: 57R20
MSC: 57R22
idZBL: Zbl 1212.57008
idMR: MR2501584
.
Date available: 2009-01-29T09:16:36Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127120
.
Reference: [1] Bröcker, T., Jänich, K.: Introduction to Differential Topology.Engl. edition, Cambridge University Press, New York (1982); German ed. Springer-Verlag, New York (1973). MR 0674117
Reference: [2] Drinfeld, V.: On the notion of geometric realization.arXiv:math/0304064. Zbl 1073.55010, MR 2119142
Reference: [3] Earle, C. J., Eells, J.: A fibre bundle description of Teichmüller theory.J. Differential Geom. 3 (1969), 19–43. Zbl 0185.32901, MR 0276999
Reference: [4] Earle, C. J., Schatz, A.: Teichmüller theory for surfaces with boundary.J. Differential Geom. 4 (1970), 169–185. Zbl 0194.52802, MR 0277000
Reference: [5] Galatius, S.: Stable homology of automorphism groups of free groups.arXiv:math/0610216.
Reference: [6] Galatius, S.: Mod $p$ homology of the stable mapping class group.Topology 43 (2004), 1105–1132. Zbl 1074.57013, MR 2079997, 10.1016/j.top.2004.01.011
Reference: [7] Galatius, S., Madsen, I., Tillmann, U., Weiss, M.: The homotopy type of the cobordism category.arXiv:math/0605249. MR 2506750
Reference: [8] Harer, J.: Stability of the homology of the mapping class groups of oriented surfaces.Ann. of Math. (2) 121 (1985), 215–249. MR 0786348
Reference: [9] Ivanov, N.: Stabilization of the homology of the Teichmüller modular groups.Algebra i Analiz 1 (1989), 120–126, translation in Leningrad Math. J. 1 (1990), 675–691. MR 1015128
Reference: [10] Madsen, I., Tillmann, U.: The stable mapping class group and $Q\mathbb{C}P^\infty _+$.Invent. Math. 145 (2001), 509–544. MR 1856399, 10.1007/PL00005807
Reference: [11] Madsen, I., Weiss, M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture.Ann. of Math. (2) 165 (2007), 843–941. Zbl 1156.14021, MR 2335797
Reference: [12] McDuff, D., Segal, G.: Homology fibrations and the “group-completion” theorem.Invent. Math. 31 (1976), 279–284. Zbl 0306.55020, MR 0402733, 10.1007/BF01403148
Reference: [13] Miller, E.: The homology of the mapping class group.J. Differential Geom. 24 (1986), 1–14. Zbl 0618.57005, MR 0857372
Reference: [14] Milnor, J.: Construction of universal bundles. II.Ann. of Math. (2) 63 (1956), 430–436. Zbl 0071.17401, MR 0077932, 10.2307/1970012
Reference: [15] Moerdijk, I.: Classifying spaces and classifying topoi.Lecture Notes in Math. 1616, Springer-Verlag, New York, 1995. Zbl 0838.55001, MR 1440857
Reference: [16] Morita, S.: Characteristic classes of surface bundles.Bull. Amer. Math. Soc. 11 (1984), 386–388 11 (1984), 386–388. Zbl 0579.55006, MR 0752805, 10.1090/S0273-0979-1984-15321-7
Reference: [17] Morita, S.: Characteristic classes of surface bundles.Invent. Math. 90 (1987), 551–557 90 (1987), 551–557. Zbl 0641.57004, MR 0914849, 10.1007/BF01389178
Reference: [18] Mumford, D.: Towards an enumerative geometry of the moduli space of curves. Arithmetic and Geometry, Vol. II, Progr. in Maths. series 36, 271–328, Birkhäuser, Boston, 1983, pp. 271–328. Zbl 0554.14008, MR 0717614
Reference: [19] Powell, J.: Two theorems on the mapping class group of a surface.Proc. Amer. Math. Soc. 68 (1978), 347–350 68 (1978), 347–350. Zbl 0391.57009, MR 0494115, 10.1090/S0002-9939-1978-0494115-8
Reference: [20] Segal, G.: Classifying spaces and spectral sequences.Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. Zbl 0199.26404, MR 0232393, 10.1007/BF02684591
Reference: [21] Segal, G.: Categories and cohomology theories.Topology 13 (1974), 293–312. Zbl 0284.55016, MR 0353298, 10.1016/0040-9383(74)90022-6
Reference: [22] Segal, G.: The topology of spaces of rational functions.Acta Math. 143 (1979), 39–72. Zbl 0427.55006, MR 0533892, 10.1007/BF02392088
Reference: [23] Tillmann, U.: On the homotopy of the stable mapping class group.Invent. Math. 130 (1997), 257–275. Zbl 0891.55019, MR 1474157, 10.1007/s002220050184
Reference: [24] Weiss, M.: What does the classifying space of a category classify?.Homology, Homotopy Appl. 7 (2005), 185–195. Zbl 1093.57012, MR 2175298
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_15.pdf 602.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo