Title:
|
Classification of principal connections naturally induced on $W^2PE$ (English) |
Author:
|
Vondra, Jan |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
44 |
Issue:
|
5 |
Year:
|
2008 |
Pages:
|
535-547 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. Let $K$ be a principal connection on $PE$ and let $\Lambda $ be a linear connection on $M$. We classify all principal connections on $W^2PE= P^2M\times _M J^2PE$ naturally given by $K$ and $\Lambda $. (English) |
Keyword:
|
natural bundle |
Keyword:
|
gauge-natural bundle |
Keyword:
|
natural operator |
Keyword:
|
principal bundle |
Keyword:
|
principal connection |
MSC:
|
53C05 |
MSC:
|
53C10 |
MSC:
|
58A20 |
MSC:
|
58A32 |
idZBL:
|
Zbl 1212.53040 |
idMR:
|
MR2501583 |
. |
Date available:
|
2009-01-29T09:16:33Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127119 |
. |
Reference:
|
[1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections.to appear. |
Reference:
|
[2] Doupovec, M., Mikulski, W. M.: Holonomic extensions of connections and symmetrization of jets.Rep. Math. Phys. 60 (2007), 299–316. MR 2374824, 10.1016/S0034-4877(07)80141-8 |
Reference:
|
[3] Eck, D. J.: Gauge-natural bundles and generalized gauge theories.Mem. Amer. Math. Soc. 247 (1981), 48p. Zbl 0493.53052, MR 0632164 |
Reference:
|
[4] Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Classical Field Theories.Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. Zbl 1138.81303, MR 2039451 |
Reference:
|
[5] Janyška, J.: On the curvature of tensor product connections and covariant differentials.Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 135–143. Zbl 1051.53017, MR 2069401 |
Reference:
|
[6] Janyška, J.: Reduction theorems for general linear connections.Differential Geom. Appl. 20 (2004), 177–196. Zbl 1108.53016, MR 2038554, 10.1016/j.difgeo.2003.10.006 |
Reference:
|
[7] Janyška, J.: Higher order valued reduction theorems for classical connections.Cent. Eur. J. Math. 3 (2005), 294–308. Zbl 1114.53018, MR 2129910, 10.2478/BF02479205 |
Reference:
|
[8] Kolář, I.: Some natural operators in differential geometry.Differential Geom. Appl., D. Reidel, 1987, pp. 91–110. MR 0923346 |
Reference:
|
[9] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer–Verlag, 1993. MR 1202431 |
Reference:
|
[10] Kolář, I., Virsik, G.: Connections in first principal prolongations.Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 163–171. MR 1463518 |
Reference:
|
[11] Krupka, D., Janyška, J.: Lectures on Differential Invariants.Folia Fac. Sci. Natur. Univ. Purkynian. Brun. Math., 1990. MR 1108622 |
Reference:
|
[12] Nijenhuis, A.: Natural bundles and their general properties.Differential Geom. (1972), 317–334, In honour of K. Yano, Kinokuniya, Tokyo. Zbl 0246.53018, MR 0380862 |
Reference:
|
[13] Terng, C. L.: Natural vector bundles and natural differential operators.Amer. J. Math. 100 (1978), 775–823. Zbl 0422.58001, MR 0509074, 10.2307/2373910 |
. |