Previous |  Up |  Next

Article

Title: Classification of principal connections naturally induced on $W^2PE$ (English)
Author: Vondra, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 5
Year: 2008
Pages: 535-547
Summary lang: English
.
Category: math
.
Summary: We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. Let $K$ be a principal connection on $PE$ and let $\Lambda $ be a linear connection on $M$. We classify all principal connections on $W^2PE= P^2M\times _M J^2PE$ naturally given by $K$ and $\Lambda $. (English)
Keyword: natural bundle
Keyword: gauge-natural bundle
Keyword: natural operator
Keyword: principal bundle
Keyword: principal connection
MSC: 53C05
MSC: 53C10
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1212.53040
idMR: MR2501583
.
Date available: 2009-01-29T09:16:33Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/127119
.
Reference: [1] Doupovec, M., Mikulski, W. M.: Reduction theorems for principal and classical connections.to appear.
Reference: [2] Doupovec, M., Mikulski, W. M.: Holonomic extensions of connections and symmetrization of jets.Rep. Math. Phys. 60 (2007), 299–316. MR 2374824, 10.1016/S0034-4877(07)80141-8
Reference: [3] Eck, D. J.: Gauge-natural bundles and generalized gauge theories.Mem. Amer. Math. Soc. 247 (1981), 48p. Zbl 0493.53052, MR 0632164
Reference: [4] Fatibene, L., Francaviglia, M.: Natural and Gauge Natural Formalism for Classical Field Theories.Kluwer Academic Publishers, Dordrecht-Boston-London, 2003. Zbl 1138.81303, MR 2039451
Reference: [5] Janyška, J.: On the curvature of tensor product connections and covariant differentials.Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 135–143. Zbl 1051.53017, MR 2069401
Reference: [6] Janyška, J.: Reduction theorems for general linear connections.Differential Geom. Appl. 20 (2004), 177–196. Zbl 1108.53016, MR 2038554, 10.1016/j.difgeo.2003.10.006
Reference: [7] Janyška, J.: Higher order valued reduction theorems for classical connections.Cent. Eur. J. Math. 3 (2005), 294–308. Zbl 1114.53018, MR 2129910, 10.2478/BF02479205
Reference: [8] Kolář, I.: Some natural operators in differential geometry.Differential Geom. Appl., D. Reidel, 1987, pp. 91–110. MR 0923346
Reference: [9] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer–Verlag, 1993. MR 1202431
Reference: [10] Kolář, I., Virsik, G.: Connections in first principal prolongations.Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 163–171. MR 1463518
Reference: [11] Krupka, D., Janyška, J.: Lectures on Differential Invariants.Folia Fac. Sci. Natur. Univ. Purkynian. Brun. Math., 1990. MR 1108622
Reference: [12] Nijenhuis, A.: Natural bundles and their general properties.Differential Geom. (1972), 317–334, In honour of K. Yano, Kinokuniya, Tokyo. Zbl 0246.53018, MR 0380862
Reference: [13] Terng, C. L.: Natural vector bundles and natural differential operators.Amer. J. Math. 100 (1978), 775–823. Zbl 0422.58001, MR 0509074, 10.2307/2373910
.

Files

Files Size Format View
ArchMathRetro_044-2008-5_14.pdf 536.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo