Previous |  Up |  Next

Article

Title: Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence (English)
Author: Kurzweil, Jaroslav
Author: Jarník, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 1
Year: 1996
Pages: 1-20
.
Category: math
.
MSC: 26A39
MSC: 26B15
MSC: 26B99
idZBL: Zbl 0902.26007
idMR: MR1371683
DOI: 10.21136/CMJ.1996.127265
.
Date available: 2009-09-24T09:52:58Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127265
.
Reference: [1] R. A. Gordon: A general convergence theorem for nonabsolute integrals.J. London Math. Soc. 44 (1991), 301–309. Zbl 0746.26003, MR 1136442
Reference: [2] R. A. Gordon: On the equivalence of two convergence theorems for the Henstock integral.Real Anal. Exchange 18 (1992/93), 261–266. MR 1205521
Reference: [3] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechosl. Math. J. 45 (1995), 79–106. MR 1314532
Reference: [4] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Results in Mathematik 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075
Reference: [5] J. Jarník, J. Kurzweil and Š. Schwabik: On Mawhin’s approach to multiple nonabsolutely convergent integrals.Čas. pěst. mat. 108 (1983), 356–380. MR 0727536
Reference: [6] P. Y. Lee and T. S. Chew: A better convergence theorem for Henstock integrals.Bull. London Math. Soc. 17 (1985), 557–564. MR 0813739, 10.1112/blms/17.6.557
Reference: [7] P. Y. Lee and T. S. Chew: A Riesz-type definition of the Denjoy integral.Real Anal. Exchange 11 (1985/86), 221–227. MR 0828492
Reference: [8] E. J. McShane: Integration.Princeton University Press, 1947. Zbl 0033.05302, MR 0082536
Reference: [9] F. Riesz and B. Sz. Nagy: Vorlesungen über Funktionalanalysis.VEB Deutscher Verlag der Wissenschaften Berlin, 1956. MR 0083695
Reference: [10] K. Yosida: Functional Analysis.Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_46-1996-1_1.pdf 1.922Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo