Previous |  Up |  Next

Article

Title: Quasi $M$-compact spaces (English)
Author: Garcia-Ferreira, Salvador
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 1
Year: 1996
Pages: 161-177
.
Category: math
.
MSC: 54A20
MSC: 54B10
MSC: 54D20
MSC: 54D30
MSC: 54D35
MSC: 54D80
idZBL: Zbl 0914.54019
idMR: MR1371698
DOI: 10.21136/CMJ.1996.127280
.
Date available: 2009-09-24T09:55:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127280
.
Reference: [BS] B. Balcar and P. Simon: Disjoint refinements.Handbook of Boolean Algebra, J.D. Monk and R. Bonnet (eds.), Nort-Holland, Amsterdam, 1989.
Reference: [B] A.R. Bernstein: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185–193. Zbl 0198.55401, MR 0251697, 10.4064/fm-66-2-185-193
Reference: [Bl$_1$] A.R. Blass: Orderings of Ultrafilters.Doctoral dissertation, Harvard University, 1970.
Reference: [Bl$_2$] A.R. Blass: Kleene degree of ultrafilters.Recursion Theory Week (Oberwolfach 1984) Lecture Notes in Mathematics 1141, Springer-Verlag, 1985, pp. 29–48. MR 0820773
Reference: [Bo] D.D. Booth: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1–24. Zbl 0231.02067, MR 0277371, 10.1016/0003-4843(70)90005-7
Reference: [CN] W.W. Comfort and S. Negrepontis: The Theory of Ultrafilters.Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974. MR 0396267
Reference: [F$_1$] Z. Frolík: The topological product of countably compact spaces.Czech. J. Math. 10 (1960), 329–338. MR 0117705
Reference: [F$_2$] Z. Frolík: Fixed points of maps of $\beta \mathbb{N}$.Bull. Amer. Math. Soc. 74 (1968), 187–191. MR 0222847, 10.1090/S0002-9904-1968-11935-4
Reference: [G-F$_1$] S. Garcia-Ferreira: Some remarks on initial $\alpha $-compactness, $<\alpha $-boundedness and $p$-compactness.Top. Proc. 15, 15–28. Zbl 0744.54009, MR 1159077
Reference: [G-F$_2$] S. Garcia-Ferreira: On $FU(p)$-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolinae 32 (1991), 161–171. Zbl 0789.54032, MR 1118299
Reference: [G-F$_3$] S. Garcia-Ferreira: Comfort types of ultrafilters.Proc. Amer. Math. Soc 120 (1994), 1251–1260. Zbl 0791.03026, MR 1170543, 10.1090/S0002-9939-1994-1170543-1
Reference: [G-F$_4$] S. Garcia-Ferreira: Three orderings on $\beta (\omega )\setminus \omega $.Top. Appl. 50 (1993), 199–216. Zbl 0791.54032, MR 1227550
Reference: [G-F$_5$] S. Garcia-Ferreira: Some generalizations of pseudocompactness.Ann. New York Acad. Sci. 728 (1994), 22–31. Zbl 0911.54022, MR 1467759, 10.1111/j.1749-6632.1994.tb44130.x
Reference: [GT S. Garcia-Ferreira and A. Tamariz-Mascarua] : The $\alpha $-boundification of $\alpha $.Proc. Amer. Math. Soc. 118 (1993), 1301–1311. Zbl 0789.54031, MR 1165054, 10.1090/S0002-9939-1993-1165054-2
Reference: [GJ] L. Gillman and M. Jerison: Rings of Continuous Functions.Graduate Texts in Mathematics Vol. 43, Springer-Verlag, 1976. MR 0407579
Reference: [GS] J. Ginsburg and V. Saks: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403–418. MR 0380736, 10.2140/pjm.1975.57.403
Reference: [GFW] S.L. Gulden, W.M. Fleischman and J.H. Weston: Linearly ordered topological spaces.Proc. Amer. Math. Soc. 24 (1970), 197–203. MR 0250272, 10.1090/S0002-9939-1970-0250272-2
Reference: [KS] V. Kannan and T. Soundararajan: Properties that are productive, closed-heredirary and surjective.Topology Appl. 12 (1981), 141–146. MR 0612011, 10.1016/0166-8641(81)90016-X
Reference: [Ka] M. Katětov: Product of filters.Comment. Math. Univ. Carolinae 9 (1968), 173–189. MR 0250257
Reference: [K$_1$] A.P. Kombarov: On a theorem of A.H. Stone.Soviet Math. Dokl. 27 (1983), 544–547. Zbl 0531.54007
Reference: [K$_2$] A.P. Kombarov: Compactness and sequentiality with respect to a set ultrafilters.Moscow Univ. Math. Bull. 40 (1985), no. 5, 15–18. MR 0814266
Reference: [Ku] K. Kunen: Weak $P$-points in $\omega ^*$.Colloquia Mathematica Societatis, János Bolyai 23 (North-Holland, Amsterdam), 1978, pp. 741–749. MR 0588822
Reference: [O] L. O’Callaghan: Topological Endohomeomorphisms and Compactness Properties of Products and Generalized $\Sigma $-products.Doctoral Dissertation, Wesleyan University, 1975.
Reference: [Sa] V. Saks: Ultrafilter invariants in topological spaces.Trans. Amer. Math. Soc. 241 (1978), 79–97. Zbl 0381.54002, MR 0492291, 10.1090/S0002-9947-1978-0492291-9
Reference: [SS] V. Saks and R.M. Stephenson Jr.: Products of $M$-compact spaces.Proc. Amer. Math. Soc. 28 (1971), 279–288. MR 0273570
Reference: [S] I.A. Savchenko: Convergence with respect to ultrafilters and the collective normality of products.Moscow Univ. Math. Bull. 43 (1988), no. 2, 45–47. Zbl 0687.54004, MR 0938072
Reference: [Sm] Y.M. Smirnov: On topological spaces, compact in a given interval of powers.Izv. Akad. Nauk. SSSR Ser. Mat. 14 (1950), 155–178. MR 0035004
Reference: [St] R.M. Stephenson Jr.: Initially $\kappa $-compact and related spaces.Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan (eds.), North-Holland, 1984. Zbl 0588.54025, MR 0776632
Reference: [SV] R.M. Stephenson Jr. and J.E. Vaughan: Products of initially $\alpha $-compact spaces.Trans. Amer. Math. Soc. 196 (1974), 177–189. MR 0425898
Reference: [V$_1$] J.E. Vaughan: Powers of spaces of non-stationary ultrafilters.Fund. Math. 117 (1983), 5–14. Zbl 0527.54024, MR 0712208, 10.4064/fm-117-1-5-14
Reference: [V$_2$] J.E. Vaughan: Countably compact and sequentially compact spaces.Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan (eds.), North-Holland, 1984. Zbl 0562.54031, MR 0776631
Reference: [W] R.G. Woods: Topological extension properties.Trans. Amer. Math. Soc. 210 (1975), 365–385. Zbl 0335.54020, MR 0375238, 10.1090/S0002-9947-1975-0375238-2
.

Files

Files Size Format View
CzechMathJ_46-1996-1_16.pdf 1.804Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo