Previous |  Up |  Next

Article

Title: Extension theorems (vector measures on quantum logics) (English)
Author: Avallone, Anna
Author: Hamhalter, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 1
Year: 1996
Pages: 179-192
.
Category: math
.
MSC: 03G12
MSC: 28A60
MSC: 28B05
MSC: 28B10
MSC: 46G10
MSC: 46L50
MSC: 81P10
idZBL: Zbl 0909.28010
idMR: MR1371699
DOI: 10.21136/CMJ.1996.127281
.
Date available: 2009-09-24T09:55:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127281
.
Reference: [1] L.J. Bunce, J.D.M. Wright: The Mackey-Gleason problem for vector measures on projections in von Neumann algebras.J. London Math. Soc. 49 (1994), 133–149. MR 1253018, 10.1112/jlms/49.1.133
Reference: [2] J. Diestel, J.J. Uhl: Vector measure.1977, Math. Surveys n. 15. MR 0453964
Reference: [3] N. Dunford, J.T. Schwartz: Linear Operators, Part I.Wiley-Interscience, New York, 1958. MR 1009162
Reference: [4] A. Dvurečenskij: Gleason Theorem and its Application.Kluwer Academic Publishers, Dordrecht (Boston), London, 1993. MR 1256736
Reference: [5] A. Dvurečenskij, S. Pulmannová: Random measures on a logic.Demonstratio Mathematica 14 (1981), 305–320. MR 0632289
Reference: [6] S.P. Gudder: Stochastic Methods in Quantum Mechanics.North Holland, Elsevier, 1979. Zbl 0439.46047, MR 0543489
Reference: [7] J. Hamhalter: Orthogonal vector measures on projection lattices in a Hilbert space.Comment. Math. Univ. Carolinae 31 (1990), 655–660. Zbl 0743.46067, MR 1091363
Reference: [8] J. Hamhalter: States on $W^*$-algebras and orthogonal vector measures.Proc. Amer. Math. Soc. 110 (1990), 803-806. Zbl 0743.46063, MR 1036987
Reference: [9] J. Hamhalter: Additivity of vector Gleason measures.Int. J. of Theor. Phys. 31 (1990), 3–13. MR 1142249, 10.1007/BF00674335
Reference: [10] J. Hamhalter: Gleason property and extensions of states on projection logics.Bull. London. Math. Soc. 26, (1994), to appear. Zbl 0830.46055, MR 1302070, 10.1112/blms/26.4.367
Reference: [11] J. Hamhalter, P. Pták: Hilbert space-valued measures on Boolean algebras (extensions).Acta Math. Univ. Comen. LX, 2 (1991), 1-6. MR 1155246
Reference: [12] J. Hamhalter, P. Pták: Hilbert space-valued states on quantum logics.Appl. Math. 37 (1992), 51–61. MR 1152157
Reference: [13] R.L. Hudson, S. Pulmannová: Sum logics and tensor products.Foundations of Physics 23 (1993), 999–1024. MR 1237047, 10.1007/BF00736013
Reference: [14] R. Jajte: Gleason measures.Prob. Anal. and Related Topics 2 (1979), 69–104. Zbl 0479.46047, MR 0556679
Reference: [15] R. V. Kadison, J. R. Ringrose: Fundamentals of the theory of operators algebras Vol. I.Academic Press, Inc., 1986. MR 0859186
Reference: [16] Z. Lipecki: Extensions of additive set functions with values in a topological group.Bull. Acad. Pol. Sc. XXII 1 (1974), 19–27. Zbl 0275.28013, MR 0349947
Reference: [17] P. Pták: On extensions of states on logics.Bull. Polish Acad. Sciences Mathematics 9–10 (1985), 493–497. MR 0826375
Reference: [18] P. Pták, S. Pulmannová: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht (Boston), London, 1991. MR 1176314
Reference: [19] H. Weber: Valuations on Complemented Lattices.Preprint (1993). Zbl 0843.06005, MR 1353726
Reference: [20] H. Weber: FN-topologies and measures.(1984), Notes on Lessons at University of Naples.
.

Files

Files Size Format View
CzechMathJ_46-1996-1_17.pdf 1.523Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo