Previous |  Up |  Next

Article

Title: A weak maximum principle and estimates of ${\rm ess}\sup\sb \Omega u$ for nonlinear degenerate elliptic equations (English)
Author: Bonafede, Salvatore
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 2
Year: 1996
Pages: 259-269
.
Category: math
.
MSC: 35B50
MSC: 35J65
MSC: 35J70
idZBL: Zbl 0870.35042
idMR: MR1388615
DOI: 10.21136/CMJ.1996.127289
.
Date available: 2009-09-24T09:56:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127289
.
Reference: [1] R. Adams: Sobolev Spaces.Academic Press, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] S. Bonafede: On maximum principle for weak subsolutions of degenerate parabolic linear equations.Comm. Math. Univ. Carolinae 35 (1994), no. 3, 417–430. Zbl 0808.35065, MR 1307270
Reference: [3] F. Cooper: A maximum principle for degenerate elliptic equations.J. London Math. Soc. 2 (1973), no. 6, 205–209. Zbl 0257.35041, MR 0318671, 10.1112/jlms/s2-6.2.205
Reference: [4] G. Fichera: On a unified theory of boundary value problems for elliptic-parabolic equations of second order, In: Boundary value problems in differential equations.University of Wisconsin Press. Madison (1960), 97–120. MR 0111931
Reference: [5] D. Gilberg, N. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer Verlag, 1983. MR 0737190
Reference: [6] F. Guglielmino, F. Nicolosi: Sulle $W$-soluzioni dei problemi al contorno per operatori ellittici degeneri.Ricerche di Matematica Supp XXXVI (1987), 59–72. MR 0956018
Reference: [7] O. A. Ladyzhenskaya, N. N. Ural’tseva: Linear and Quasilinear Elliptic Equations.Academic Press, New York, 1968. MR 0244627
Reference: [8] M. K. V. Murthy, G. Stampacchia: Boundary value problems for some degenerate-elliptic operators.Annali di Matematica 4 (1968), no. 80, 1–122. MR 0249828, 10.1007/BF02413623
Reference: [9] F. Nicolosi: Sottosoluzioni deboli delle equazioni paraboliche lineari del secondo ordine superiormente limitate.Le Matematiche 28 (1973), 361–378. MR 0364867
Reference: [10] F. Nicolosi: Regolarizzazione delle soluzioni deboli dei problemi al contorno per operatori parabolici degeneri.Le Matematiche 33 (1978), 83–98. Zbl 0454.35023
Reference: [11] F. Nicolosi: Soluzioni deboli dei problemi al contorno per operatori parabolici che possono degenerare.Annali di Matematica 4 (1980), no. 125, 135–155. Zbl 0452.35065, MR 1553443, 10.1007/BF01789410
Reference: [12] G. Stampacchia: Le probleme de Dirichlet pour les equations elliptiques du second ordre, a coefficients discontinus.Annali Inst. Fourier 15 (1965), 189–257. Zbl 0151.15401, MR 0192177, 10.5802/aif.204
Reference: [13] J. Serrin: Local behavior of solution of quasilinear equations.Acta Mathematica 111 (1964), 247–302. MR 0170096, 10.1007/BF02391014
.

Files

Files Size Format View
CzechMathJ_46-1996-2_7.pdf 1.196Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo