Previous |  Up |  Next

Article

Title: Cotype and complemented copies of $c_0$ in spaces of operators (English)
Author: Bonet, J.
Author: Domański, P.
Author: Lindström, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 2
Year: 1996
Pages: 271-289
.
Category: math
.
MSC: 46B28
MSC: 47D15
idZBL: Zbl 0870.46016
idMR: MR1388616
DOI: 10.21136/CMJ.1996.127290
.
Date available: 2009-09-24T09:56:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127290
.
Reference: [A] S. I. Ansari: On Banach spaces $Y$ for which $B(C(\Omega ),Y)= K(C(\Omega ),Y)$.Pacific J. Math (to appear). Zbl 0831.47015, MR 1346253
Reference: [AD] R. Anantharaman, J. Diestel: Sequences in the range of a vector measure.Comment. Math. 30 (1991), 221–235. MR 1122692
Reference: [B] K. D. Bierstedt: An introduction to locally convex inductive limits.Functional Analysis and its Applications, World Sci., Singapore, 1988, pp. 35–133. Zbl 0786.46001, MR 0979516
Reference: [BDLR] J. Bonet, P. Domański, M. Lindström and M. S. Ramanujan: Operator spaces containing $c_0$ or $l^\infty $.Results Math (to appear). MR 1356892
Reference: [BL1] J. Bonet and M. Lindström: Spaces of operators between Fréchet spaces.Math. Proc. Cambridge Phil. Soc. 115 (1994), 133–144. MR 1253288, 10.1017/S0305004100071978
Reference: [BL2] J. Bonet and M. Lindström: Convergent sequences in duals of Fréchet spaces.Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess, D. Vogt (eds.), Proc. Essen Conf. 1991, Marcel Dekker, New York, 1993, pp. 391–404. MR 1241690
Reference: [Ct] J. M. F. Castillo: On Banach spaces X such that $L(L_p,X)=K(L_p, X)$.Preprint.
Reference: [Ce] P. Cembranos: $C(K,E)$ contains a complemented copy of $c_0$.Proc. Amer. Math. Soc. 91 (1984), 556–558. MR 0746089
Reference: [CoRu] M. S. Collins, W. Ruess: Weak compactness in spaces of compact operators and of vector valued functions.Pac. J. Math. 106 (1982), 45–71. MR 0694671, 10.2140/pjm.1983.106.45
Reference: [Da] J. Dazord: Factoring operators through $c_0$.Math. Ann. 220 (1976), 105–122. Zbl 0304.47026, MR 0420318, 10.1007/BF01351695
Reference: [DF] A. Defant, K. Floret: Tensor Norms and Operator Ideals.North-Holland Math. Studies 176, North-Holland, Amsterdam, 1993. MR 1209438
Reference: [Dz] J. C. Díaz: Montel subspaces in the countable projective limits of $L^p(\mu )$-spaces.Canad. Math. Bull. 32 (1989), 169–176. MR 1006742, 10.4153/CMB-1989-025-4
Reference: [DzS] S. Díaz: Complemented copies of $c_0$ in $L^\infty (\mu ,E)$.Proc. Amer. Math. Soc. 120 (1994), 1167–1172. MR 1189744, 10.1090/S0002-9939-1994-1189744-1
Reference: [D1] J. Diestel: Sequences and Series in Banach Spaces.Springer, New York, 1984. MR 0737004
Reference: [DD1] P. Domański and L. Drewnowski: Uncomplementability of the spaces of norm continuous functions in some spaces of “weakly” continuous functions.Studia Math. 97 (1991), 245–251. MR 1100690, 10.4064/sm-97-3-245-251
Reference: [DD2] P. Domański and L. Drewnowski: Fréchet spaces of continuous vector-valued functions: Complementability in dual Fréchet spaces and injectivity.Studia Math. 102 (1992), 257–267. MR 1170555, 10.4064/sm-102-3-257-267
Reference: [DD3] P. Domański and L. Drewnowski: Complementability and injectivity of Fréchet spaces of continuous vector-valued functions.Functional Analysis, K. D. Bierstedt, A. Pietsch, W. Ruess, D. Vogt (eds.), Proc. Essen Conf. 1991, Marcel Dekker, New York, 1993, pp. 405–413. MR 1241691
Reference: [DD4] P. Domański and L. Drewnowski: Injectivity of spaces of bounded vector sequences and of spaces of operators.Preprint (1992). MR 1170555
Reference: [DL] P. Domański, M. Lindström: Grothendieck spaces and duals of injective tensor products.Preprint (1994). MR 1405494
Reference: [Dr1] L. Drewnowski: An extension of a theorem of Rosenthal on operators acting from $l^\infty (\Gamma )$.Studia Math. 62 (1976), 207–215. MR 0423116
Reference: [Dr2] L. Drewnowski: Copies of $l^\infty $ in an operator space.Math. Proc. Cambridge Phil. Soc. 108 (1990), 523–526. MR 1068453, 10.1017/S0305004100069401
Reference: [Dr3] L. Drewnowski: When does $ca(\Sigma ,X)$ contain a copy of $l_\infty $ or $c_0$?.Proc. Amer. Math. Soc. 109 (1990), 747–752. MR 1012927
Reference: [Dr4] L. Drewnowski: Another note on copies of $l_\infty $ and $c_0$ in $ca(\Sigma ,X)$ and the equality $ca(\Sigma ,X)=cca(\Sigma ,X)$.Preprint (1990). MR 1666614
Reference: [Dr5] L. Drewnowski: Private communication..
Reference: [DrE] L. Drewnowski, G. Emmanuele: The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$.Studia Math. 104 (1993), 111–123. MR 1211812
Reference: [E1] G. Emmanuele: Remarks on the uncomplemented subspace $W(F,E)$.J. Funct. Analysis 99 (1991), 125–130. MR 1120917, 10.1016/0022-1236(91)90055-A
Reference: [E2] G. Emmanuele: On complemented copies of $c_0$ in spaces of operators.Comment. Math. 32 (1992), 29–32. MR 1202755
Reference: [E3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Phil. Soc. 111 (1992), 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [E4] G. Emmanuele: About the position of $K_{w^*}(E^{\prime },F)$ inside $L_{w^*}(E^{\prime },F)$.Atti Sem. Mat. Fis. Univ. Modena (to appear). MR 1282327
Reference: [E5] G. Emmanuele: About the uncomplementability of spaces of compact operators in larger spaces of operators.Preprint.
Reference: [E6] G. Emmanuele: About the position of $K(X,Y)$ inside $DP(X,Y)$ and $W(X,Y)$.Preprint.
Reference: [E7] G. Emmanuele: A note on Banach spaces containing complemented copies of $c_0$.Extracta Math. 3 (1988), 98–100.
Reference: [E8] G. Emmanuele: On complemented copies of $c_0$ in spaces of operators II.Preprint.
Reference: [E9] G. Emmanuele: Answer to a question by M. Feder about $K(X,Y)$.Rev. Mat. Complutense (Madrid) (to appear). Zbl 0813.46013, MR 1269756
Reference: [Fe1] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196–205. Zbl 0411.46009, MR 0575060, 10.1215/ijm/1256047715
Reference: [Fe2] M. Feder: On the nonexistence of a projection onto the space of compact operators.Canad. Math. Bull. 25 (1982), 78–81. MR 0657655, 10.4153/CMB-1982-011-0
Reference: [Fl] K. Floret: Weakly Compact Sets.Lect. Notes Math., vol. 801, Springer, Berlin, 1980. Zbl 0437.46006, MR 0576235, 10.1007/BFb0091483
Reference: [Fr1] F. J. Freniche: Barreledness of the space of vector-valued and simple functions.Math. Ann. 267 (1984), 479–486. MR 0742894, 10.1007/BF01455966
Reference: [Fr2] F. J. Freniche: Grothendieck locally convex spaces of continuous vector-valued functions.Pacific J. Math. 120 (1985), 345–355. Zbl 0575.46036, MR 0810776, 10.2140/pjm.1985.120.345
Reference: [J] H. Jarchow: Locally Convex Spaces.Teubner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257
Reference: [Jo1] K. John: On the uncomplemented subspace $K(X,Y)$.Czech. Math. J. 42 (1992), 167–173. Zbl 0776.46016, MR 1152178
Reference: [Jo2] K. John: On the space $K(P,P^*)$ of compact operators on Pisier space $P$.Note Mat. (Lecce) 12 (1992), 69–75. MR 1258564
Reference: [Ka1] N. J. Kalton: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [Ka2] N. J. Kalton: Exhaustive operators and vectors measures.Proc. Edinburgh Math. Soc. 19 (1975), 291–300. MR 0388099
Reference: [KRT] H. König, J. R. Retherford, N. Tomczak-Jaegermann: On the eigenvalues of $(p,2)$-summing operators and constants associated with normed spaces.J. Funct. Anal. 37 (1980), 88–126. MR 0576647, 10.1016/0022-1236(80)90029-4
Reference: [LT] J. Lindenstrauss, L. Tzafiri: Classical Banach Spaces.Lecture Notes in Math., vol. 338, Springer, Berlin, 1973. MR 0415253
Reference: [L] M. Lindström: A characterization of Schwartz spaces.Math. Z. 198 (1988), 423–430. MR 0946613, 10.1007/BF01184675
Reference: [LS] M. Lindström and T. Schlumprecht: A Josefson-Nissenzweig theorem for Fréchet spaces.Bull. London Math. Soc. 25 (1993), 55–58. MR 1190364, 10.1112/blms/25.1.55
Reference: [MR] C. W. McArthur, J. R. Rutherford: Some applications of an inequality in locally convex spaces.Trans. Amer. Math. Soc. 137 (1969), 115–123. MR 0239391, 10.1090/S0002-9947-1969-0239391-0
Reference: [Me] J. Mendoza: Copies of $l_\infty $ in $L^p(\mu , X)$.Proc. Amer. Math. Soc. 109 (1990), 125–127. MR 1012935
Reference: [OP] R. I. Ovsepian, A. Pełczyński: On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthogonal systems in $L^2$.Studia Math. 54 (1975), 149–159. MR 0394137, 10.4064/sm-54-2-149-159
Reference: [PS] A. Pełczyński and Z. Semadeni: Spaces of continuous functions III.Studia Math 18 (1958), 211–222. MR 0107806
Reference: [PCB] P. Pérez Carreras and J. Bonet: Barrelled Locally Convex Spaces.North-Holland Mathematics Studies, vol.  131, Elsevier/North-Holland, Amsterdam, 1987. MR 0880207
Reference: [Ra] F. Räbiger: Beiträge zur Strukturtheorie der Grothendieckräume.Sitzungber. Heidelb. Akad. Wiss. Math.-Natur. Kl. Abh. 4 (1985).
Reference: [Rh] K. Reiher: Weighted inductive and projective limits of normed Köthe function spaces.Results Math. 13 (1988), 147–161. Zbl 0636.46023, MR 0928147, 10.1007/BF03323402
Reference: [Ry] R. Ryan: Complemented copies of $c_0$ in injective tensor products and spaces of compact operators.Proc. Congreso de Analysis Funcional, El Escorial, Madrid, 1988, pp. 13–18.
Reference: [Sa] F. Saab and P. Saab: On complemented copies of $c_0$ in injective tensor products.Contemporary Math. 52 (1986), 131–135. 10.1090/conm/052/840704
Reference: [S] Th. Schlumprecht: Limited sets in Banach spaces.Dissertation (1987), München.
Reference: [T1] M. Talagrand: Cotype of operators from $C(K)$.Invent. Math. 107 (1992), 1–40. Zbl 0788.47022, MR 1135462, 10.1007/BF01231879
Reference: [T2] M. Talagrand: Cotype and $(q,1)$-summing norm in a Banach space.Invent. Math. 110 (1992), 545–556. Zbl 0814.46010, MR 1189490, 10.1007/BF01231344
Reference: [TJ] N. Tomczak-Jaegermann: The moduli of smoothness and convexity and the Rademacher average of trace class $S_p$.Studia Math. 50 (1974), 163–182. MR 0355667
Reference: [Wl] L. J. Weill: Unconditional and shrinking bases in locally convex spaces.Pacific J. Math. 29 (1969), 467–483. Zbl 0176.10802, MR 0246083, 10.2140/pjm.1969.29.467
.

Files

Files Size Format View
CzechMathJ_46-1996-2_8.pdf 1.982Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo