Previous |  Up |  Next

Article

Title: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$ (English)
Author: Kowalski, Oldřich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 3
Year: 1996
Pages: 427-474
.
Category: math
.
MSC: 53B20
MSC: 53C20
MSC: 53C25
idZBL: Zbl 0879.53014
idMR: MR1408298
DOI: 10.21136/CMJ.1996.127308
.
Date available: 2009-09-24T09:58:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127308
.
Reference: [BKV] E. Boeckx, O. Kowalski and L. Vanhecke: Nonhomogeneous relatives of symmetric spaces.Differential Geometry and its Applications 4 (1994), 45–69. MR 1264908
Reference: [Ca 1] E. Cartan: Leçons sur la géométrie des espaces de Riemann. 2nd edition.Paris, 1946. MR 0020842
Reference: [Ca 2] E. Cartan: Les systèmes différentiels extérieurs et leurs applications géométriques.Hermann, Paris, 1945. Zbl 0063.00734, MR 0016174
Reference: [K] O. Kowalski: Riemannian 3-manifolds with constant Ricci roots $\rho_1 = \rho_2 \neq \rho_3$.Nagoya Math. J. 132 (1993), 1–36. MR 1253692
Reference: [KN] S. Kobayashi and K. Nomizu: Foundations of differential geometry.vol. I, Interscience Publishers, New York London, 1963. MR 0152974
Reference: [KTV 1] O. Kowalski, F. Tricerri and L. Vanhecke: New examples of nonhomogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space.C.R. Acad. Sci. Paris, Série I, 311 (1990), 355–360. MR 1071643
Reference: [KTV 2] O. Kowalski, F. Tricerri and L. Vanhecke: Curvature homogeneous Riemannian manifolds.J. Math. Pures et Appl. 71 (1992), 471–501. MR 1193605
Reference: [KTV 3] O. Kowalski, F. Tricerri and L. Vanhecke: Curvature homogeneous spaces with a solvable Lie group as homogeneous model.J. Math. Soc. Japan 44 (1992), 461–484. MR 1167378, 10.2969/jmsj/04430461
Reference: [Lu] Ü. Lumiste: Semi-symmetric submanifold as the second order envelope of symmetric submanifolds.Proc. Estonian Acad. Sci. Phys. Math. No1 35 (1990), 1–8. Zbl 0704.53017
Reference: [N] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor.Tôhoku Math. J. 20 (1968), 46–59. Zbl 0174.53301, MR 0226549, 10.2748/tmj/1178243217
Reference: [Se] K. Sekigawa: On the Riemannian manifolds of the form $B \times _fF$.Kodai Math. Sem. Rep. 26 (1975), 343–347. MR 0438253, 10.2996/kmj/1138847016
Reference: [Si 1] N.S. Sinjukov: On geodesic maps of Riemannian spaces (Russian).Trudy Vsesojuz, Matem. Sjezda (1956), 167–168.
Reference: [Si 2] N.S. Sinjukov: Geodesic maps of Riemannian spaces (Russian).Publishing House “Nauka”, Moscow, 1979, pp. 256. MR 0552022
Reference: [Sz 1] Z.I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R = 0$, I, Local version.J. Differential Geometry 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486
Reference: [Sz 2] Z.I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R = 0$.II, Global version. Geometriae Dedicata (1985), 65–108. MR 0797152
Reference: [Sz 3] Z.I. Szabó: Classification and construction of complete hypersurfaces satisfying $R(X,Y) \cdot R = 0$.Acta Sci. Math. 47 (1984), 321–348. MR 0783309
Reference: [T] H. Takagi: An example of Riemannian manifold satisfying $R(X,Y) \cdot R = 0$ but not $\nabla R = 0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109
.

Files

Files Size Format View
CzechMathJ_46-1996-3_5.pdf 3.929Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo