Previous |  Up |  Next

Article

Title: Weak calibers and the Scott-Watson theorem (English)
Author: Fedeli, Alessandro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 3
Year: 1996
Pages: 421-425
.
Category: math
.
MSC: 54A25
MSC: 54D20
MSC: 54E52
idZBL: Zbl 0879.54026
idMR: MR1408297
DOI: 10.21136/CMJ.1996.127307
.
Date available: 2009-09-24T09:58:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127307
.
Reference: [1] Fedeli A.: On the $k$-Baire property.Comment. Math. Univ. Carolinae 34,3 (1993), 525–527. Zbl 0784.54031, MR 1243083
Reference: [2] Fletcher P., Lindgren W.F.: A note on spaces of second category.Arch. der Math. 24 (1973), 186–187. MR 0315663, 10.1007/BF01228197
Reference: [3] Fogelgren J.R., McCoy R.A.: Some topological properties defined by homeomorphism groups.Arch. der Math. 22 (1971), 528–533. MR 0300259, 10.1007/BF01222613
Reference: [4] Frolík Z.: Generalizations of compact and Lindelöf spaces.Czechoslovak Math. J. 9 (1959), 172–217.
Reference: [5] Hager A.W.: Projections of zero-sets (and fine uniformity on a product).Trans. Amer. Math. Soc. 140 (1969), 87–94. MR 0242114, 10.1090/S0002-9947-1969-0242114-2
Reference: [6] McCoy R.A.: A filter characterization of regular Baire spaces.Proc. Amer. Math. Soc. 40 (1973), 268–270. Zbl 0267.54026, MR 0339096, 10.1090/S0002-9939-1973-0339096-8
Reference: [7] McCoy R.A., Smith J.C.: The almost Lindelöf property for Baire spaces.Topology Proceedings 9 (1984), 99–104. MR 0781554
Reference: [8] Oxtoby J.C.: Spaces that admit a category measure.J. Reine Angew. Math. 205 (1961), 156–170. Zbl 0134.04302, MR 0140637
Reference: [9] Scott B.: Pseudocompact, metacompact spaces are compact.Topology Proceedings 4 (1979), 577–586. MR 0598295
Reference: [10] Tall F.D.: The countable chain condition versus separability—applications of Martin’s axiom.Gen. Top. and Appl. 4 (1974), 315–339. Zbl 0293.54003, MR 0423284
Reference: [11] Watson W.S.: Pseudocompact, metacompact spaces are compact.Proc. Amer. Math. Soc. 81 (1981), 151–152. Zbl 0468.54014, MR 0589159
Reference: [12] Watson W.S.: A pseudocompact meta-Lindelöf space which is not compact.Top. Appl. 20 (1985), 237–243. Zbl 0589.54030, MR 0804036
.

Files

Files Size Format View
CzechMathJ_46-1996-3_4.pdf 503.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo