Previous |  Up |  Next

Article

Title: Quantum logics representable as kernels of measures (English)
Author: Navara, Mirko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 4
Year: 1996
Pages: 587-597
.
Category: math
.
MSC: 03G12
MSC: 81P10
idZBL: Zbl 0879.03017
idMR: MR1414596
DOI: 10.21136/CMJ.1996.127321
.
Date available: 2009-09-24T10:00:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127321
.
Reference: [1] Binder, J.: A Loomis-Sikorski theorem for logics.Math. Slovaca 38 (1988), 367–371. Zbl 0664.03038, MR 0978767
Reference: [2] Drossos, C.A.: Boolean methods and Pták’s sum.(to appear). Zbl 0836.03036
Reference: [3] Grätzer, G.: Universal Algebra.Springer-Verlag, New York/Heidelberg/Berlin, 1979. MR 0538623
Reference: [4] Gudder, S.P., Zerbe, J.: Generalized monotone convergence and Radon-Nikodym theorems.J. Math. Physics 22 (1981), 2553–2561. MR 0640666, 10.1063/1.524832
Reference: [5] Janowitz, M.F.: Constructible lattices.J. Austr. Math. Soc. 14 (1972), 311–316. Zbl 0201.01803, MR 0316333, 10.1017/S1446788700010776
Reference: [6] Kalmbach, G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
Reference: [7] Mayet-Ippolito, A.: Generalized orthomodular posets.Demonstratio Math. 24 (1991), 263–274. Zbl 0755.06006, MR 1142894
Reference: [8] Müller, V.: Jauch-Piron states on concrete quantum logics.Int. J. Theor. Phys. 32 (1993), 433–442. MR 1213098, 10.1007/BF00673353
Reference: [9] Müller, V., Pták, P., Tkadlec, J.: Concrete quantum logics with covering properties.Int. J. Theor. Phys. 31 (1992), 843–854. MR 1162627, 10.1007/BF00678549
Reference: [10] Navara, M.: .When is the integral on quantum probability spaces additive? Real Analysis Exchange 14 (1989), 228–234. Zbl 0734.28015, MR 0988369, 10.2307/44153642
Reference: [11] Navara, M., Pták, P.: Almost Boolean orthomodular posets.J. Pure Appl. Algebra 60 (1989), 105–111. MR 1014608, 10.1016/0022-4049(89)90108-4
Reference: [12] Olejček, V.: Generation of a q-$\sigma $-algebra in the plane.Proc. Conf. Topology and Measure V, Greifswald, 1988, pp. 121–125.
Reference: [13] Pták, P.: Summing of Boolean algebras and logics.Demonstratio Math. 19 (1986), 349–358. MR 0895008
Reference: [14] Pták, P.: FAT $\leftrightarrow $ CAT (in the state space of quantum logics).Proc. 1st Winter School on Measure Theory, Liptovský Ján, 1988, pp. 113–118. Zbl 0685.03045, MR 1000201
Reference: [15] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht/Boston/London, 1991. MR 1176314
Reference: [16] Rüttimann, G.T.: Jauch-Piron states.J. Math. Phys. 18 (1977), 189–193. MR 0426647
Reference: [17] Sikorski, R.: Boolean Algebras.Springer-Verlag, Berlin, 1969. Zbl 0191.31505, MR 0126393
Reference: [18] Suppes, P.: The probabilistic argument for a nonclassical logic of quantum mechanics.Philos. Sci. 33 (1966), 14–21. MR 0215575, 10.1086/288067
Reference: [19] Zerbe, J.E., Gudder, S.P.: Additivity of integrals on generalized measure spaces.J. Comb. Theory (A) 30 (1985), 42–51. MR 0787717, 10.1016/0097-3165(85)90082-2
Reference: [20] Zierler, N., Schlessinger, M.: Boolean embeddings of orthomodular sets and quantum logic.Duke Math. J. 32 (1965), 251–262. MR 0175520, 10.1215/S0012-7094-65-03224-2
.

Files

Files Size Format View
CzechMathJ_46-1996-4_2.pdf 1.059Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo