| Title:
             | 
Geodesics and steps in a connected graph (English) | 
| Author:
             | 
Nebeský, Ladislav | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
47 | 
| Issue:
             | 
1 | 
| Year:
             | 
1997 | 
| Pages:
             | 
149-161 | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
05C12 | 
| MSC:
             | 
05C38 | 
| idZBL:
             | 
Zbl 0898.05041 | 
| idMR:
             | 
MR1435613 | 
| . | 
| Date available:
             | 
2009-09-24T10:03:33Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127346 | 
| . | 
| Reference:
             | 
[1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston 1979.. MR 0525578 | 
| Reference:
             | 
[2] F. Harary: Graph Theory.Addison-Wesley, Reading (Mass.) 1969. Zbl 1161.05345, MR 0256911 | 
| Reference:
             | 
[3] D. C. Kay and G. Chartrand: A characterization of certain ptolemaic graphs.Canad. J. Math. 17 (1965), 342–346. MR 0175113, 10.4153/CJM-1965-034-0 | 
| Reference:
             | 
[4] H. M. Mulder: The Interval Function of a Graph.Mathematisch Centrum. Amsterdam 1980. MR 0605838 | 
| Reference:
             | 
[5] L. Nebeský: A characterization of the set of all shortest paths in a connected graph.Mathematica Bohemica 119 (1994), 15–20. MR 1303548 | 
| Reference:
             | 
[6] L. Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math. J. 44 (119) (1994), 173–178. MR 1257943 | 
| Reference:
             | 
[7] L. Nebeský: Visibilities and sets of shortest paths in a connected graph.Czechoslovak Math. J. 45(120) (1995), 563–570. MR 1344521 | 
| Reference:
             | 
[8] L. Nebeský: On the set of all shortest paths of a given length in a connected graph.Czechoslovak Math. J. 46(121) (1996), 155–160. MR 1371697 | 
| . |