Previous |  Up |  Next

Article

Title: Congruences and ideals in ternary rings (English)
Author: Chajda, Ivan
Author: Halaš, Radomír
Author: Machala, František
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 1
Year: 1997
Pages: 163-172
Summary lang: English
.
Category: math
.
Summary: A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels. (English)
Keyword: ternary ring
Keyword: ideal
Keyword: congruence
Keyword: normal congruence
Keyword: congruence kernel
MSC: 08A05
MSC: 08A30
MSC: 13A15
MSC: 17A40
MSC: 20N10
idZBL: Zbl 0934.17001
idMR: MR1435614
.
Date available: 2009-09-24T10:03:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127347
.
Reference: [1] G.E. Bates, F. Kiokemeister: A note on homomorphic mappings of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180–1185. 10.1090/S0002-9904-1948-09146-7
Reference: [2] R. Bělohlávek, I. Chajda: Congruences and ideals in semiloops.Acta Sci. Math. (Szeged) 59 (1994), 43–47.
Reference: [3] I. Chajda, R. Halaš: Ideals in bi-ternary rings.Discussione Math. Algebra and Stochastic Methods 15 (1995), 11–21.
Reference: [4] H.P. Gumm, A. Ursini: Ideals in universal algebra.Algebra Univ. 19 (1984), 45–54. 10.1007/BF01191491
Reference: [5] M. Hall: Projective planes.Trans. Amer. Math. Soc. 54 (1943), 229–277. Zbl 0060.32209, 10.1090/S0002-9947-1943-0008892-4
Reference: [6] B. Jónsson: On the representation of lattices.Math. Scand. 1 (1953), 193–206. 10.7146/math.scand.a-10377
Reference: [7] F. Machala: Erweiterte lokale Ternärringe.Czech. Math. J. 27 (1977), 560–572. Zbl 0391.17003
Reference: [8] F. Machala: Koordinatisation projectiver Ebenen mit Homomorphismus.Czech. Math. J. 27 (1977), 573–590.
Reference: [9] F. Machala: Koordinatisation affiner Ebenen mit Homomorphismus.Math. Slovaca 27 (1977), 181–193. Zbl 0359.50017
Reference: [10] G. Pickert: ARRAY(0x9fa9250).Heidelberg, New York, 1975, pp. .
Reference: [11] A. Ursini: Sulle varietá di algebra con una buona teoria degli ideali.Bull. U.M.I. 6 (1972), no. 4, 90–95.
.

Files

Files Size Format View
CzechMathJ_47-1997-1_13.pdf 761.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo