| Title:
             | 
Congruences and ideals in ternary rings (English) | 
| Author:
             | 
Chajda, Ivan | 
| Author:
             | 
Halaš, Radomír | 
| Author:
             | 
Machala, František | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
47 | 
| Issue:
             | 
1 | 
| Year:
             | 
1997 | 
| Pages:
             | 
163-172 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels. (English) | 
| Keyword:
             | 
ternary ring | 
| Keyword:
             | 
ideal | 
| Keyword:
             | 
congruence | 
| Keyword:
             | 
normal congruence | 
| Keyword:
             | 
congruence kernel | 
| MSC:
             | 
08A05 | 
| MSC:
             | 
08A30 | 
| MSC:
             | 
13A15 | 
| MSC:
             | 
17A40 | 
| MSC:
             | 
20N10 | 
| idZBL:
             | 
Zbl 0934.17001 | 
| idMR:
             | 
MR1435614 | 
| . | 
| Date available:
             | 
2009-09-24T10:03:41Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127347 | 
| . | 
| Reference:
             | 
[1] G.E. Bates, F. Kiokemeister: A note on homomorphic mappings of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180–1185. 10.1090/S0002-9904-1948-09146-7 | 
| Reference:
             | 
[2] R. Bělohlávek, I. Chajda: Congruences and ideals in semiloops.Acta Sci. Math. (Szeged) 59 (1994), 43–47. | 
| Reference:
             | 
[3] I. Chajda, R. Halaš: Ideals in bi-ternary rings.Discussione Math. Algebra and Stochastic Methods 15 (1995), 11–21. | 
| Reference:
             | 
[4] H.P. Gumm, A. Ursini: Ideals in universal algebra.Algebra Univ. 19 (1984), 45–54. 10.1007/BF01191491 | 
| Reference:
             | 
[5] M. Hall: Projective planes.Trans. Amer. Math. Soc. 54 (1943), 229–277. Zbl 0060.32209, 10.1090/S0002-9947-1943-0008892-4 | 
| Reference:
             | 
[6] B. Jónsson: On the representation of lattices.Math. Scand. 1 (1953), 193–206. 10.7146/math.scand.a-10377 | 
| Reference:
             | 
[7] F. Machala: Erweiterte lokale Ternärringe.Czech. Math. J. 27 (1977), 560–572. Zbl 0391.17003 | 
| Reference:
             | 
[8] F. Machala: Koordinatisation projectiver Ebenen mit Homomorphismus.Czech. Math. J. 27 (1977), 573–590. | 
| Reference:
             | 
[9] F. Machala: Koordinatisation affiner Ebenen mit Homomorphismus.Math. Slovaca 27 (1977), 181–193. Zbl 0359.50017 | 
| Reference:
             | 
[10] G. Pickert: ARRAY(0x9fa9250).Heidelberg, New York, 1975, pp. . | 
| Reference:
             | 
[11] A. Ursini: Sulle varietá di algebra con una buona teoria degli ideali.Bull. U.M.I. 6 (1972), no. 4, 90–95. | 
| . |