Previous |  Up |  Next


ternary ring; ideal; congruence; normal congruence; congruence kernel
A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
[1] G.E. Bates, F. Kiokemeister: A note on homomorphic mappings of quasigroups into multiplicative systems. Bull. Amer. Math. Soc. 54 (1948), 1180–1185. DOI 10.1090/S0002-9904-1948-09146-7
[2] R. Bělohlávek, I. Chajda: Congruences and ideals in semiloops. Acta Sci. Math. (Szeged) 59 (1994), 43–47.
[3] I. Chajda, R. Halaš: Ideals in bi-ternary rings. Discussione Math. Algebra and Stochastic Methods 15 (1995), 11–21.
[4] H.P. Gumm, A. Ursini: Ideals in universal algebra. Algebra Univ. 19 (1984), 45–54. DOI 10.1007/BF01191491
[5] M. Hall: Projective planes. Trans. Amer. Math. Soc. 54 (1943), 229–277. DOI 10.1090/S0002-9947-1943-0008892-4 | Zbl 0060.32209
[6] B. Jónsson: On the representation of lattices. Math. Scand. 1 (1953), 193–206. DOI 10.7146/math.scand.a-10377
[7] F. Machala: Erweiterte lokale Ternärringe. Czech. Math. J. 27 (1977), 560–572. Zbl 0391.17003
[8] F. Machala: Koordinatisation projectiver Ebenen mit Homomorphismus. Czech. Math. J. 27 (1977), 573–590.
[9] F. Machala: Koordinatisation affiner Ebenen mit Homomorphismus. Math. Slovaca 27 (1977), 181–193. Zbl 0359.50017
[10] G. Pickert: ARRAY(0x9fa9250). Heidelberg, New York, 1975, pp. .
[11] A. Ursini: Sulle varietá di algebra con una buona teoria degli ideali. Bull. U.M.I. 6 (1972), no. 4, 90–95.
Partner of
EuDML logo