Previous |  Up |  Next

Article

Title: Relatively coarse sequential convergence (English)
Author: Frič, Roman
Author: Zanolin, Fabio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 3
Year: 1997
Pages: 395-408
Summary lang: English
.
Category: math
.
Summary: We generalize the notion of a coarse sequential convergence compatible with an algebraic structure to a coarse one in a given class of convergences. In particular, we investigate coarseness in the class of all compatible convergences (with unique limits) the restriction of which to a given subset is fixed. We characterize such convergences and study relative coarseness in connection with extensions and completions of groups and rings. E.g., we show that: (i) each relatively coarse dense group precompletion of the group of rational numbers (equipped with the usual metric convergence) is complete; (ii) there are exactly $\exp \exp \omega $ such completions; (iii) the real line is the only one of them the convergence of which is Fréchet. Analogous results hold for the relatively coarse dense field precompletions of the subfield of all complex numbers both coordinates of which are rational numbers. (English)
Keyword: Sequential convergence: compatible-
Keyword: coarse-
Keyword: relatively coarse-
Keyword: FLUSH-group
Keyword: FLUSH-ring
Keyword: completion
Keyword: extension
MSC: 16W99
MSC: 20K35
MSC: 20K45
MSC: 54A20
MSC: 54H11
MSC: 54H13
idZBL: Zbl 0897.54002
idMR: MR1461420
.
Date available: 2009-09-24T10:06:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127365
.
Reference: [1] Banaschewski, B.: Minimal topological algebras.Math. Ann. 211 (1974), 107–114. Zbl 0275.46043, MR 0357520, 10.1007/BF01344165
Reference: [2] Contessa, M. and F. Zanolin: On some remarks about a not completable convergence ring. General Topology and its Relations to Modern Analysis and Algebra V.Proc. Fifth Prague Topological Sympos., Prague 1981), Heldermann Verlag, Berlin, 1982, pp. 107–114. MR 0698397
Reference: [3] Dikranjan, D., Frič, R. and F. Zanolin: On convergence groups with dense coarse subgroups.Czechoslovak Math. J. 37 (1987), 471–479. MR 0904771
Reference: [4] Frič, R.: Products of coarse convergence groups.Czechoslovak Math. J. 38 (1988), 285–290. MR 0946298
Reference: [5] Frič, R.: Rationals with exotic convergences.Math. Slovaca 39 (1989), 141–147. MR 1018255
Reference: [6] Frič, R.: Rationals with exotic convergences II.Math. Slovaca 40 (1990), 389–400. MR 1120969
Reference: [7] Frič, R.: On ring convergences.Riv. Mat. Pura Appl. 11 (1992), 125–138. MR 1183444
Reference: [8] Frič, R. and V. Koutník: Completions for subcategories of convergence rings.Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatories, World Scientific Publishing Co., Singapore, 1989, pp. 195–207. MR 1047901
Reference: [9] Frič, R. and F. Zanolin: Coarse convergence groups.Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně 1984), Akademie-Verlag Berlin, 1985, pp. 107–114. MR 0835476
Reference: [10] Frič, R. and F. Zanolin: Sequential convergence in free groups.Rend. Istit. Mat. Univ. Trieste 18 (1986), 200–218. MR 0928331
Reference: [11] Frič, R. and F. Zanolin: Coarse sequential convergence in groups, etc..Czechoslovak Math. J. 40 (1990), 459–467. MR 1065025
Reference: [12] Frič, R. and F. Zanolin: Strict completions of $L_0^*$-groups.Czechoslovak Math. J. 42 (1992), 589–598. MR 1182190
Reference: [13] Frič, R. and F. Zanolin: Minimal pseudotopological groups. (Presented at Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, Praha 1988, unpublished.).(19$\infty $).
Reference: [14] Jakubík, J.: On convergence in linear spaces.Mat.-Fyz. Časopis Slovensk. Akad. Vied 6 (1956), 57–67. (Slovak. Russian summary) MR 0084718
Reference: [15] Novák, J.: On completion of convergence commutative groups.General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340. MR 0365451
Reference: [16] Simon, P. and F. Zanolin: A coarse convergence group need not be precompact.Czechoslovak Math. J. 37 (1987), 480–486. MR 0904772
.

Files

Files Size Format View
CzechMathJ_47-1997-3_2.pdf 1.380Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo