Previous |  Up |  Next

Article

Title: Vector-valued pseudo almost periodic functions (English)
Author: Zhang, Chuanyi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 3
Year: 1997
Pages: 385-394
Summary lang: English
.
Category: math
.
Summary: Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation. (English)
Keyword: almost periodic functions pseudo almost periodic functions
Keyword: pseudo almost periodic functions
MSC: 42A75
MSC: 43A60
idZBL: Zbl 0901.42005
idMR: MR1461419
.
Date available: 2009-09-24T10:06:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127364
.
Reference: [1] L. Amerio and G. Prouse: Almost-Periodic Functions and Functional Equations.Van Nostrand, New York, 1971. MR 0275061
Reference: [2] J.F. Berglund, H.D. Junghenn and P. Milnes: Analysis on Semigroups: Function Spaces, Compactifications, Representations.Wiley, New York, 1989. MR 0999922
Reference: [3] A. S. Besicovitch: Almost Periodic Functions.Dover, New York, 1954. MR 0068029
Reference: [4] H.A. Bohr: Almost Periodic Functions.Chelsea, New York, 1951.
Reference: [5] C. Corduneanu: Almost Periodic Functions.Chelsea, New York, 2nd ed., 1989. Zbl 0672.42008
Reference: [6] K. de Leeuw and I. Glicksberg: Applications of almost periodic compactifications.Acta Math. 105 (1961), 63–97. MR 0131784, 10.1007/BF02559535
Reference: [7] S. Goldberg and P. Irwin: Weakly almost periodic vector valued functions.Dissertationes Math. 157 (1979). MR 0524925
Reference: [8] B. M. Levitan and V. V. Zhikov: Almost periodic functions and differential equations.Cambridge University Press, New York, 1982. MR 0690064
Reference: [9] P. Milnes: On vector-valued weakly almost periodic functions.J. London Math. Soc. (2) 22 (1980), 467–472. Zbl 0456.43003, MR 0596325, 10.1112/jlms/s2-22.3.467
Reference: [10] W.M. Ruess and W.H. Summers: Compactness in spaces of vector valued continuous functions and asymptotic almost periodicity.Math. Nachr. 135 (1988), 7–33. MR 0944213, 10.1002/mana.19881350102
Reference: [11] W.M. Ruess and W.H. Summers: Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity.Dissertationes Math. 279 (1989). MR 0986113
Reference: [12] S. Zaidman: Almost-Periodic Functions in Abstract Spaces.Pitman, London, 1985. Zbl 0648.42006, MR 0790316
Reference: [13] C. Zhang: Pseudo almost periodic solutions of some differential equations.J. Math. Anal. Appl. 181 (1994), 62–76. Zbl 0796.34029, MR 1257954, 10.1006/jmaa.1994.1005
Reference: [14] C. Zhang: Pseudo almost periodic solutions of some differential equations, II.J. Math. Anal. Appl. 192 (1995), 543–561. Zbl 0826.34040, MR 1332227, 10.1006/jmaa.1995.1189
.

Files

Files Size Format View
CzechMathJ_47-1997-3_1.pdf 829.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo