Previous |  Up |  Next

Article

Title: Variations of additive functions (English)
Author: Buczolich, Zoltán
Author: Pfeffer, Washek F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 3
Year: 1997
Pages: 525-555
Summary lang: English
.
Category: math
.
Summary: We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals. (English)
MSC: 26B05
MSC: 26B30
MSC: 28A75
MSC: 49Q15
MSC: 58C35
idZBL: Zbl 0903.26004
idMR: MR1461431
.
Date available: 2009-09-24T10:08:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127376
.
Reference: [B] B. Bongiorno: Essential variation.Measure Theory Oberwolfach 1981, Springer Lecture Notes Math., 945, 1981, pp. 187–193. MR 0675282
Reference: [BPS] B. Bongiorno, L. Di Piazza and V. Skvortsov: The essential variation of a function and some convergence theorems.Anal. Math. 22 (1996), no. 1, 3–12. MR 1384345, 10.1007/BF02342334
Reference: [BPT] B. Bongiorno, W.F. Pfeffer and B.S. Thomson: A full descriptive definition of the gage integral.Canadian Math. Bull. 39 (1996), no. 4, 390–401. MR 1426684, 10.4153/CMB-1996-047-x
Reference: [BV] B. Bongiorno and P. Vetro: Su un teorema di F. Riesz.Atti Acc. Sci. Lettere e Arti Palermo (IV) 37 (1979), 3–13.
Reference: [Di] L. Di Piazza: A note on additive functions of intervals.Real Anal. Ex. 20(2) (1994–95), 815–818. MR 1348103
Reference: [EG] L.C. Evans and R.F. Gariepy: Measure Theory and Fine Properties of Functions.CRC Press, Boca Raton, 1992. MR 1158660
Reference: [Fe] H. Federer: Geometric Measure Theory.Springer-Verlag, New York, 1969. Zbl 0176.00801, MR 0257325
Reference: [Gu] E. Giusti: Minimal Surfaces and Functions of Bounded Variation.Birkhäuser, Basel, 1984. Zbl 0545.49018, MR 0775682
Reference: [P1] W.F. Pfeffer: The Gauss-Green theorem.Adv. Math. 87 (1991), 93–147. Zbl 0732.26013, MR 1102966, 10.1016/0001-8708(91)90063-D
Reference: [P3] W.F. Pfeffer: A descriptive definition of a variational integral and applications.Indiana Univ. Math. J. 40 (1991), 259–270. Zbl 0747.26010, MR 1101229, 10.1512/iumj.1991.40.40011
Reference: [P] W.F. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [Sa] S. Saks: Theory of the Integral.Dover, New York, 1964. MR 0167578
Reference: [St] E.M. Stein: Singular Integrals and Differentiability Properties of Function.Princeton Univ. Press, Princeton, 1970. MR 0290095
Reference: [T] B. S. Thomson: Derivates of Interval Functions.Mem. Amer. Math. Soc., #452, Providence, 1991. Zbl 0734.26003, MR 1078198
Reference: [V] A.I. Volpert: The spaces $BV$ and quasilinear equations.Math. USSR-SB. 2 (1967), 255–267. MR 0216338
.

Files

Files Size Format View
CzechMathJ_47-1997-3_13.pdf 2.921Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo