Previous |  Up |  Next

Article

Title: Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions (English)
Author: Jarník, Jiří
Author: Kurzweil, Jaroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 3
Year: 1997
Pages: 557-575
Summary lang: English
.
Category: math
.
Summary: For a new Perron-type integral a concept of convergence is introduced such that the limit $f$ of a sequence of integrable functions $f_k$, $ k \in \mathbb N$ is integrable and any integrable $f$ is the limit of a sequence of stepfunctions $g_k$, $ k \in \mathbb N$. (English)
MSC: 26A39
MSC: 26B99
idZBL: Zbl 0902.26006
idMR: MR1461432
.
Date available: 2009-09-24T10:08:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127377
.
Reference: [1] J. Kurzweil and J. Jarník: Perron-type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence.Czechosl. Math. J. 46 (121) (1996), 1–20. MR 1371683
Reference: [2] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechosl. Math. J. 45 (1995), 79–106. MR 1314532
Reference: [3] J. Kurzweil: Nichtabsolut konvergente Integrale.Teubner, Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [4] E. J. McShane: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals.Mem. Amer. Math. Soc. 88 (1969), . Zbl 0188.35702, MR 0265527
Reference: [5] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czechosl. Math. J. 31 (1981), 614–632. Zbl 0562.26004, MR 0631606
Reference: [6] E. J. McShane: Unified Integration.Academic Press, 1983. Zbl 0551.28001, MR 0740710
.

Files

Files Size Format View
CzechMathJ_47-1997-3_14.pdf 1.728Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo