Previous |  Up |  Next

Article

Title: On the non-vanishing of local cohomology modules (English)
Author: Yassemi, Siamak
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 585-592
Summary lang: English
.
Category: math
.
Summary: It is shown that for any Artinian modules $M$, $\dim M^{\vee }$ is the greatest integer $i$ such that ${\mbox{H}}^i_{\mathfrak m}(M^{\vee })\ne 0$. (English)
MSC: 13D45
MSC: 13E10
idZBL: Zbl 0901.13014
idMR: MR1479306
.
Date available: 2009-09-24T10:08:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127380
.
Reference: [1] A. Grothendick (notes by R. Hartshorne): Local Cohomology.Lecture Notes in Math. 41, Springer Verlag, 1967. MR 0224620
Reference: [2] H.-B. Foxby: A homological theory of complexes of modules.Preprint Series No. 19a & 19b, Dept. of Mathematics, Univ. Copenhagen, 1981.
Reference: [3] I.G. Macdonald: Secondary representation of modules over a commutative ring.Symp. Math. XI (1973) 23–43. Zbl 0271.13001, MR 0342506
Reference: [4] I. G. Macdonald and R. Y. Sharp: An elementary proof of the non-vanishing of certain local cohomology modules.Quart. J. Math. (Oxford)(2) 23 (1970), 197–204. MR 0299598, 10.1093/qmath/23.2.197
Reference: [5] R.Y. Sharp: Local cohomology theory in commutative algebra.Quart. J. Math. (Oxford) (2) 21 (1970), 425–434. Zbl 0204.06003, MR 0276217, 10.1093/qmath/21.4.425
Reference: [6] S. Yassemi: Coassociated primes.Comm. Algebra 23 (1995), 1473–1498. Zbl 0832.13004, MR 1317409, 10.1080/00927879508825288
Reference: [7] S. Yassemi: Magnitude of modules.Comm. Algebra 23 (1995), 3993–4008. Zbl 0836.13005, MR 1351115, 10.1080/00927879508825445
.

Files

Files Size Format View
CzechMathJ_47-1997-4_2.pdf 671.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo