Previous |  Up |  Next

Article

Title: Angular limits of the integrals of the Cauchy type (English)
Author: Král, Josef
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 593-617
Summary lang: English
.
Category: math
.
Summary: Integrals of the Cauchy type extended over the boundary $\partial A$ of a general compact set $A$ in the complex plane are investigated. Necessary and sufficient conditions on $\partial A$ are established guaranteeing the existence of angular limits of these integrals at a fixed $z\in \partial A$ for all densities satisfying a Hölder-type condition at $z$. (English)
Keyword: integrals of Cauchy type
Keyword: angular limits
MSC: 30E20
idZBL: Zbl 0899.30027
idMR: MR1479307
.
Date available: 2009-09-24T10:08:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127381
.
Reference: [1] K. Astala: Calderón’s problem for Lipschitz classes and the dimension of quasicircles.Revista Matemática Iberoamericana 4 (1988), 469–486. Zbl 0703.30036, MR 1048585, 10.4171/RMI/81
Reference: [2] Ju. D. Burago, V. G. Maz’ya: Nekotoryje voprosy teorii potenciala i teorii funkcij dlja oblastěj s nereguljarnymi granicami.Zapiski Naučnych Seminarov LOMI 3 (1967). (Russian)
Reference: [3] M. Dont: Non-tangential limits of the double layer potentials.Časopis pro pěst. mat. 97 (1972), 231–258. Zbl 0237.31012, MR 0444975
Reference: [4] H. Federer: The Gauss–Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44–76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [5] H. Federer: Geometric Measure Theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325
Reference: [6] V. P. Havin, N. K. Nikolski: Linear and Complex Analysis Problem Book 3.Lecture Notes in Math., vols. 1573, 1574, Springer-Verlag, 1994. MR 0734178
Reference: [7] J. Král: Integral Operators in Potential Theory.Lecture Notes in Math., vol. 823, Springer-Verlag, 1980. MR 0590244, 10.1007/BFb0091035
Reference: [8] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [9] J. Král: Ob uglovych preděl’nych značenijach integralov tipa Koši.Doklady AN SSSR 155 (1964), no. 1, 32–34. (Russian)
Reference: [10] J. Král, J. Lukeš: On the modified logarithmic potential.Czechoslov. Math. J. 21 (1971), 76–98. MR 0277740
Reference: [11] J. Král, D. Medková: Angular limits of double layer potentials.Czechoslov. Math. J. 45 (1995), 267–292. MR 1331464
Reference: [12] J. Lukeš: A note on integral of the Cauchy type.Comment. Math. Univ. Carolinae 9 (1968), 563–570. MR 0243011
Reference: [13] I. D. Mačavariani: O graničnych značenijach logarifmičeskogo potenciala i integrala tipa Koši.Soobšč. Akad. Nauk. Gruz. SSR 69 (1973), 21–24. (Russian)
Reference: [14] I. D. Mačavariani: O nepreryvnosti osobogo integrala s jadrom Koši.Trudy Inst. Vyčisl. Matem. AN Gruz. SSR 25 (1985), 87–115. (Russian)
Reference: [15] V. G. Maz’ya: Boundary Integral Equations.Analysis IV, Encyklopaedia of Mathematical Science, vol. 27, Springer-Verlag, 1991.
Reference: [16] N. J. Muskhelišvili: Singuljarnyje integral’nyje uravněnija.Moscow, 1962. (Russian)
Reference: [17] S. Saks: Theory of the integral.Dover Publications, New York, 1964. MR 0167578
Reference: [18] H. Watanabe: Double layer potentials for a bounded domain with fractal boundary.Abstracts of lectures delivered in International Conference on Potential Theory (August 13–20, 1994, Kouty, Czech Republic), p. 44. Zbl 0854.31001
Reference: [19] W. P. Ziemer: Weakly Differentiable Functions.Springer-Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_47-1997-4_3.pdf 2.806Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo