Previous |  Up |  Next

Article

Keywords:
integrals of Cauchy type; angular limits
Summary:
Integrals of the Cauchy type extended over the boundary $\partial A$ of a general compact set $A$ in the complex plane are investigated. Necessary and sufficient conditions on $\partial A$ are established guaranteeing the existence of angular limits of these integrals at a fixed $z\in \partial A$ for all densities satisfying a Hölder-type condition at $z$.
References:
[1] K. Astala: Calderón’s problem for Lipschitz classes and the dimension of quasicircles. Revista Matemática Iberoamericana 4 (1988), 469–486. DOI 10.4171/RMI/81 | MR 1048585 | Zbl 0703.30036
[2] Ju. D. Burago, V. G. Maz’ya: Nekotoryje voprosy teorii potenciala i teorii funkcij dlja oblastěj s nereguljarnymi granicami. Zapiski Naučnych Seminarov LOMI 3 (1967). (Russian)
[3] M. Dont: Non-tangential limits of the double layer potentials. Časopis pro pěst. mat. 97 (1972), 231–258. MR 0444975 | Zbl 0237.31012
[4] H. Federer: The Gauss–Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44–76. DOI 10.1090/S0002-9947-1945-0013786-6 | MR 0013786 | Zbl 0060.14102
[5] H. Federer: Geometric Measure Theory. Springer-Verlag, 1969. MR 0257325 | Zbl 0176.00801
[6] V. P. Havin, N. K. Nikolski: Linear and Complex Analysis Problem Book 3. Lecture Notes in Math., vols. 1573, 1574, Springer-Verlag, 1994. MR 0734178
[7] J. Král: Integral Operators in Potential Theory. Lecture Notes in Math., vol. 823, Springer-Verlag, 1980. MR 0590244
[8] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. DOI 10.2307/1994580 | MR 0209503
[9] J. Král: Ob uglovych preděl’nych značenijach integralov tipa Koši. Doklady AN SSSR 155 (1964), no. 1, 32–34. (Russian)
[10] J. Král, J. Lukeš: On the modified logarithmic potential. Czechoslov. Math. J. 21 (1971), 76–98. MR 0277740
[11] J. Král, D. Medková: Angular limits of double layer potentials. Czechoslov. Math. J. 45 (1995), 267–292. MR 1331464
[12] J. Lukeš: A note on integral of the Cauchy type. Comment. Math. Univ. Carolinae 9 (1968), 563–570. MR 0243011
[13] I. D. Mačavariani: O graničnych značenijach logarifmičeskogo potenciala i integrala tipa Koši. Soobšč. Akad. Nauk. Gruz. SSR 69 (1973), 21–24. (Russian)
[14] I. D. Mačavariani: O nepreryvnosti osobogo integrala s jadrom Koši. Trudy Inst. Vyčisl. Matem. AN Gruz. SSR 25 (1985), 87–115. (Russian)
[15] V. G. Maz’ya: Boundary Integral Equations. Analysis IV, Encyklopaedia of Mathematical Science, vol. 27, Springer-Verlag, 1991.
[16] N. J. Muskhelišvili: Singuljarnyje integral’nyje uravněnija. Moscow, 1962. (Russian)
[17] S. Saks: Theory of the integral. Dover Publications, New York, 1964. MR 0167578
[18] H. Watanabe: Double layer potentials for a bounded domain with fractal boundary. Abstracts of lectures delivered in International Conference on Potential Theory (August 13–20, 1994, Kouty, Czech Republic), p. 44. Zbl 0854.31001
[19] W. P. Ziemer: Weakly Differentiable Functions. Springer-Verlag, 1989. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo