Previous |  Up |  Next

Article

Title: On positive solutions of quasilinear elliptic systems (English)
Author: Cheng, Yuanji
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 681-687
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin{array}{ll}-\Delta _p u = f(x,u,v), &\quad \text{in} \ \Omega , -\Delta _p v = g(x,u,v), &\quad \text{in} \ \Omega , u = v = 0, &\quad \text{on} \ \partial \Omega , \end{array}\right.\] where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^{1,\alpha }$-domain in $\mathbb R^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^{p-1}$, $ g(x,u,v)=\lambda _2u^{p-1}$ and obtain a non-existence result of positive solutions for the general systems. (English)
Keyword: Eigenvalue problem
Keyword: Degenerate elliptic operator
Keyword: Nonlinear systems
Keyword: Positive solutions.
MSC: 35B05
MSC: 35J55
MSC: 35J65
MSC: 35J70
idZBL: Zbl 0899.35032
idMR: MR1479312
.
Date available: 2009-09-24T10:09:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127386
.
Reference: [1] Y. Cheng: On the existence of radial solutions of a nonlinear elliptic BVP in an annulus.Math. Nachr. 165 (1994), 61–77. Zbl 0836.35050, MR 1261363, 10.1002/mana.19941650106
Reference: [2] Y. Cheng: On the existence of radial solutions of a nonlinear elliptic equation on the unit ball.Nonlinear Analysis, TMA, 24:3 (1995), 287–307. Zbl 0819.35050, MR 1312769
Reference: [3] Y. Cheng: An eigenvalue problem for a quasilinear elliptic equation.U.U.M.D. Report NO:19, 1994.
Reference: [4] Ph. Clément, D. de Figueiredo, E. Mitidieri: Positive solutions of semilinear elliptic systems.Comm. P.D.E. 17 (1992), 923–940. MR 1177298, 10.1080/03605309208820869
Reference: [5] Ph. Clément, R. Manásevich, E. Mitidieri: Positive solutions of quasilinear elliptic systems via blow up.Comm. P.D.E. 18 (1993), 2071-2116. MR 1249135
Reference: [6] R. Courant, D. Hilbert: Methods of Mathematical Physics II.Interscience, 1953. MR 0065391
Reference: [7] R. Dalmasso: Positive solutions of nonlinear elliptic systems.Annl. Pol. Math. LVIII.2 (1993), 201–213. Zbl 0791.35014, MR 1239024, 10.4064/ap-58-2-201-212
Reference: [8] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Second edition, Springer-Verlag, 1992.
Reference: [9] J. Heinonen, T. Kilpelaninen, O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford, University Press, 1993. MR 1207810
Reference: [10] H. A. Levine: The role of critical exponents in blow-up theorems.SIAM Review 32:2 (1990), 262–288. MR 1056055, 10.1137/1032046
Reference: [11] P. Lindqvist: On the equation div$(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2} u=0$.Proc. Amer. Math. Soci. 109 (1990), 157–164. Zbl 0714.35029, MR 1007505, 10.1090/S0002-9939-1990-1007505-7
Reference: [12] P. Lions: On the existence of positive solutions of semilinear elliptic equations.SIAM Review 24 (1982), 441–467. Zbl 0511.35033, MR 0678562, 10.1137/1024101
Reference: [13] M. Mitidieri: A Rellich type identity and applications.Comm. P.D.E. 18 (1993), 125–151. Zbl 0816.35027, MR 1211727, 10.1080/03605309308820923
Reference: [14] L. Peletier, R.C.M. van der Vorst: Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equations.Diff Interg. Equa. 5 (1992), 747–767. MR 1167492
Reference: [15] S. Sakaguchi: Concavity property of solutions to some degenerate quasilinear elliptic Dirichlet problems.Ann. Scuola. Norm. Pisa 14 (1987), 403–421. MR 0951227
Reference: [16] R.C.M. van der Vorst: Variational identities and applications to differential systems.Arch. rational Mech. Anal. 116c (1991), 375–398. Zbl 0796.35059, MR 1132768
.

Files

Files Size Format View
CzechMathJ_47-1997-4_8.pdf 793.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo