Previous |  Up |  Next

Article

Title: The third boundary value problem in potential theory for domains with a piecewise smooth boundary (English)
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 651-679
Summary lang: English
.
Category: math
.
Summary: The paper investigates the third boundary value problem $\frac{\partial u}{\partial n}+\lambda u=\mu $ for the Laplace equation by the means of the potential theory. The solution is sought in the form of the Newtonian potential (1), (2), where $\nu $ is the unknown signed measure on the boundary. The boundary condition (4) is weakly characterized by a signed measure ${T}\nu $. Denote by ${T}\:\nu \rightarrow {T}\nu $ the corresponding operator on the space of signed measures on the boundary of the investigated domain $G$. If there is $\alpha \ne 0$ such that the essential spectral radius of $(\alpha I-{T})$ is smaller than $|\alpha |$ (for example, if $G\subset R^3$ is a domain “with a piecewise smooth boundary” and the restriction of the Newtonian potential ${\mathcal U}\lambda $ on $\partial G$ is a finite continuous functions) then the third problem is uniquely solvable in the form of a single layer potential (1) with the only exception which occurs if we study the Neumann problem for a bounded domain. In this case the problem is solvable for the boundary condition $\mu \in $ for which $\mu (\partial G)=0$. (English)
MSC: 31B20
MSC: 35J05
MSC: 35J25
idZBL: Zbl 0978.31003
idMR: MR1479311
.
Date available: 2009-09-24T10:09:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127385
.
Reference: [1] T.S. Angell, R.E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
Reference: [2] K. Arbenz: Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken.Promotionsarbeit Nr. 2777, Eidgenössische Technishe Hochschule in Zürich 1958, 1–41. Zbl 0084.09603, MR 0101416
Reference: [3] M. Brelot: Élements de la théorie classique du potential.Les cours de Sorbone, Paris, 1959. MR 0106366
Reference: [4] Ju. D. Burago, V.G. Maz’ya: Some questions in potential theory and function theory for regions with irregular boundaries (Russian).Zapiski nauč. sem. Leningrad. otd. MIAN 3 (1967).
Reference: [5] Ju. D. Burago, V.G. Maz’ya and V.D. Sapožnikova: On the theory of potentials of a double and a simple layer for regions with irregular boundaries (Russian).Problems Math. Anal. Boundary Value Problems Integr. Equations. (Russian), 3–34, Izdat. Leningrad. Univ., Leningrad, 1966. MR 0213596
Reference: [6] T. Carleman: Über das Neumann-Poincarésche Problem für ein Gebeit mit Ecken, Inaugural-Dissertation.Uppsala, 1916.
Reference: [7] I.I. Daniljuk: Nonregular Boundary Value Problems in the Plane.Nauka, Moskva, 1975. (Russian) MR 0486546
Reference: [8] E. De Giorgi: Su una teoria generale della misura $(r-1)$-dimensionale in uno spazi ad $r$ dimensioni.Annali di Mat. Pura ed Appl. Ser. 4, 36 (1954), 191–213. MR 0062214, 10.1007/BF02412838
Reference: [9] E. De Giorgi: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$ dimensioni.Ricerche Mat. 4 (1955), 95–113. MR 0074499
Reference: [10] M. Dont, E. Dontová: Invariance of the Fredholm radius of an operator in potential theory.Čas. pěst. mat. 112 (1987), no. 3, 269–283. MR 0905974
Reference: [11] N. Dunford, J.T. Schwarz: Linear Operators.Interscience, New York, 1963.
Reference: [12] J. Elschner: The double-layer potential operator over polyhedral domains I: Solvability in weighted Sobolev spaces.Applicable Analysis 45 (1992), 117–134. Zbl 0749.31002, MR 1293593, 10.1080/00036819208840092
Reference: [13] E. Fabes: Layer potential methods for boundary value problems on Lipschitz domains, in J. Král, J. Lukeš, I. Netuka and J. Veselý (eds.): Potential Theory. Surveys and Problems. Proceedings, Prague 1987. Lecture Notes in Mathematics 1344..Springer-Verlag, Berlin-Heidelberg-New York, 1988. MR 0973881
Reference: [14] E.B. Fabes, M. Jodeit Jr., J.E. Lewis: Double layer potentials for domain with corners and edges.Indiana Univ. Math. J. 26 (1977), 95–114. MR 0432899, 10.1512/iumj.1977.26.26007
Reference: [15] E. Fabes, M. Sand, J.K. Seo: The spectral radius of the classical layer potentials on convex domains.Partial Differential Equations With Minimal Smoothness and Applications, 129–137, IMA Vol. Math. Appl. 42, Springer, New York, 1992. MR 1155859, 10.1007/978-1-4612-2898-1_12
Reference: [16] H. Federer: A note on the Gauss-Green theorem.Proc. Amer. Math. Soc. 9 (1958), 447–451. Zbl 0087.27302, MR 0095245, 10.1090/S0002-9939-1958-0095245-2
Reference: [17] H. Federer: Geometric Measure Theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325
Reference: [18] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44–76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [19] N.V. Grachev: Representations and estimates for inverse operators of the potential theory integral equations in a polyhedron. Potential Theory (Nagoya, 1990), 201–206.de Gruyter, Berlin, 1992. MR 1167235
Reference: [20] N.V. Grachev, V.G. Maz’ya: On the Fredholm radius for operators of double-layer type on the piece-wise smooth boundary (Russian)..Vest. Leningr. un. mat. mech. (1986), no. 4, 60–64. MR 0880678
Reference: [21] N.V. Grachev, V.G. Maz’ya: Representations and estimates for inverse operators of the potential theory integral equations on surfaces with conic points.Soobstch. Akad. Nauk Gruzin SSR 132 (1988), 21–23. (Russian) MR 1020233
Reference: [22] N.V. Grachev, V.G. Maz’ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint N26, Akad. Nauk SSSR. Inst. of Engin. Studies, Leningrad, 1989..(Russian)
Reference: [23] N.V. Grachev, V.G. Maz’ya: On invertibility of the boundary integral operators of elasticity on surfaces with conic points in the spaces generated by norms $C$, $C^\alpha $, $L_p$, Preprint N30, Akad. Nauk SSSR, Inst. of Engin. Studies, Leningrad, 1990..(Russian)
Reference: [24] P.R. Halmos: Finite-Dimensional Vector Spaces.D. van Nostrand, Princeton-Toronto--London-New York, 1963. Zbl 0107.01501, MR 0089819
Reference: [25] D.S. Jerison and C.E. Kenig: The Dirichlet problem in non smooth domains.Annals of Mathematics 113 (1981), 367–382. MR 0607897, 10.2307/2006988
Reference: [26] D.S. Jerison and C.E. Kenig: The Neumann problem in Lipschitz domains.Bulletin of AMS 4 (1981), 203–207. MR 0598688, 10.1090/S0273-0979-1981-14884-9
Reference: [27] K. Jörgens: Lineare Integraloperatoren.B.G. Teubner, Stuttgart, 1970. MR 0461049
Reference: [28] J. Král: Integral operators in potential theory..Lecture Notes in Mathematics 823. Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0590244
Reference: [29] J. Král: The Fredholm radius of an operator in potential theory.Czechoslovak Math. J. 15(90) (1965), 454–473, 565–588. MR 0190363
Reference: [30] J. Král: Flows of heat and the Fourier problem.Czechoslovak Math. J. 20(95) (1970), 556–597. MR 0271554
Reference: [31] J. Král: Note on sets whose characteristic functions have singed measure for their partial derivatives.Čas. pěst. mat. 86 (1961), 178–194. (Czech) MR 0136697
Reference: [32] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [33] J. Král, W.L. Wendland: Some example concerning applicability of the Fredholm-Radon method in potential theory.Aplikace matematiky 31 (1986), 293–308. MR 0854323
Reference: [34] N.L. Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
Reference: [35] V.G. Maz’ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, t. 27.Viniti, Moskva, 1988. (Russian)
Reference: [36] V.G. Maz’ya: Boundary integral equations, Encyclopedia of Mathematical Sciences.vol. 27, Springer-Verlag, 1991.
Reference: [37] V.G. Maz’ya, B.A. Plamenevsky: The first boundary-value problem for the classical equations of the mathematical physics in domain with piece-wise smooth boundary. I, II.Z. Anal. Anwend. 2 (1983), no. 4, 335–359, No. 6, 523–551. (Russian) MR 0719176, 10.4171/ZAA/83
Reference: [38] W. McLean: Boundary integral methods for the Laplace equation. Thesis.Australian National University, 1985. MR 0825529
Reference: [39] D. Medková: On the convergence of Neumann series for noncompact operators.Czechoslovak Math. J. 41(116) (1991), 312–316. MR 1105448
Reference: [40] D. Medková: Invariance of the Fredholm radius of the Neumann operator.Čas. pěst. mat. 115 (1990), no. 2, 147–164. MR 1054002
Reference: [41] D. Medková: On essential norm of Neumann operator.Mathematica Bohemica 117 (1992), no. 4, 393–408. MR 1197288
Reference: [42] S.G. Michlin: Integralnyje uravnenija i ich prilozhenija k nekotorym problemam mekhaniki, matematicheskoj fiziki i tekhniki.Moskva, 1949.
Reference: [43] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae 12 (1971), 205–211. Zbl 0215.42602, MR 0287021
Reference: [44] I. Netuka: Generalized Robin problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 312–324. Zbl 0241.31008, MR 0294673
Reference: [45] I. Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [46] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22(97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [47] J. Plemelj: Potentialtheoretische Untersuchungen.Leipzig, 1911.
Reference: [48] J. Radon: Über lineare Funktionaltransformationen und Funktionalgleichungen. Collected Works.vol. 1, 1987.
Reference: [49] J. Radon: Über Randwertaufgaben beim logarithmischen Potential. Collected Works.vol. 1, 1987.
Reference: [50] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron: The panel method.Applicable Analysis 45 (1992), no. 1–4, 135–177. MR 1293594, 10.1080/00036819208840093
Reference: [51] S. Rempel: Corner singularity for transmission problems in three dimensions.Integral Equations and Operator Theory 12 (1989), 835–854. Zbl 0695.47046, MR 1018215, 10.1007/BF01196880
Reference: [52] S. Rempel and G. Schmidt: Eigenvalues for spherical domains with corners via boundary integral equations.Integral Equations Oper. Theory 14 (1991), 229–250. MR 1090703, 10.1007/BF01199907
Reference: [53] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionelle.Budapest, 1952.
Reference: [54] S. Saks: Theory of the Integral.Hafner Publishing Comp., New York, 1937. Zbl 0017.30004
Reference: [55] V.D. Sapožnikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries (Russian), Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian), 35–44.Izdat. Leningrad. Univ., Leningrad, 1966. MR 0213597
Reference: [56] M. Schechter: Principles of Functional Analysis.Academic Press, 1973. MR 0467221
Reference: [57] L. Schwartz: Théorie des distributions.Hermann, Paris, 1950. Zbl 0037.07301, MR 0209834
Reference: [58] N. Suzuki: On the convergence of Neumann series in Banach space.Math. Ann. 220 (1976), 143–146. Zbl 0304.47016, MR 0412855, 10.1007/BF01351698
Reference: [59] A.E. Taylor: Introduction to Functional Analysis.New York, 1967.
Reference: [60] G.C. Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains.Journal of Functional Analysis 59 (1984), 572–611. Zbl 0589.31005, MR 0769382, 10.1016/0022-1236(84)90066-1
Reference: [61] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_47-1997-4_7.pdf 3.001Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo