Title:
|
Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line (English) |
Author:
|
Laurençot, Ph. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
48 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
85-94 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over $R$, and prove that it is described by a maximal compact attractor in $H^2(R)$. (English) |
Keyword:
|
Korteweg-de Vries equation |
Keyword:
|
attractor |
Keyword:
|
unbounded domain. |
MSC:
|
35B40 |
MSC:
|
35Q53 |
MSC:
|
47H20 |
MSC:
|
58F39 |
idZBL:
|
Zbl 0928.35145 |
idMR:
|
MR1614084 |
. |
Date available:
|
2009-09-24T10:11:22Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127401 |
. |
Reference:
|
[Al] E.A. Alarcón: Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations.Proc. Roy. Soc. Edinburgh 123A (1993), 893–916. MR 1249693 |
Reference:
|
[BV] A.V. Babin, M.I. Vishik: Attractors of partial differential evolution equations in an unbounded domain.Proc. Roy. Soc. Edinburgh 116A (1990), 221–243. MR 1084733 |
Reference:
|
[Ba] J. Ball: A proof of the existence of global attractors for damped semilinear wave equations.(to appear). MR 2026182 |
Reference:
|
[BSc] J. Bona, R. Scott: Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces.Duke Math. J. 43 (1976), 87–99. MR 0393887, 10.1215/S0012-7094-76-04309-X |
Reference:
|
[BSm] J.L. Bona, R. Smith: The initial-value problem for the Korteweg-de Vries equation.Philos. Trans. Roy. Soc. London 278A (1975), 555–604. MR 0385355, 10.1098/rsta.1975.0035 |
Reference:
|
[Fe] E. Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$.Diff. Integral Eq. 9 (1996), 1147–1156. MR 1392099 |
Reference:
|
[Gh1] J.M. Ghidaglia: Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time.J. Diff. Eq. 74 (1988), 369–390. Zbl 0668.35084, MR 0952903, 10.1016/0022-0396(88)90010-1 |
Reference:
|
[Gh2] J.M. Ghidaglia: A note on the strong convergence towards attractors of damped forced KdV equation.J. Diff. Eq. 110 (1994), 356–359. MR 1278375, 10.1006/jdeq.1994.1071 |
Reference:
|
[GT] J.M. Ghidaglia, R. Temam: Attractors for damped nonlinear hyperbolic equations.J. Math. Pures Appl. 66 (1987), 273–319. MR 0913856 |
Reference:
|
[Ha] J.K. Hale: Asymptotic Behavior of Dissipative Systems.Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, R.I., 1988. Zbl 0642.58013, MR 0941371 |
Reference:
|
[MGK] R.M. Miura, C.S. Gardner, M.D. Kruskal: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion.J. Math. Phys. 9 (1968), 1204–1209. MR 0252826, 10.1063/1.1664701 |
Reference:
|
[Te] R. Temam: Infinite-dimensional dynamical systems in mechanics and physics.Appl. Math. Sc. 68, Springer-Verlag, New York, 1988. Zbl 0662.35001, MR 0953967, 10.1007/978-1-4684-0313-8 |
. |