Previous |  Up |  Next

Article

Title: The ${\scr Ar}$-free products of archimedean $l$-groups (English)
Author: Ton, Dao-Rong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 2
Year: 1998
Pages: 243-252
Summary lang: English
.
Category: math
.
Summary: The objective of this paper is to give two descriptions of the $\scr A r$-free products of archimedean $\ell $-groups and to establish some properties for the $\scr A r$-free products. Specifically, it is proved that $\scr A r$-free products satisfy the weak subalgebra property. (English)
MSC: 06F20
MSC: 20F60
idZBL: Zbl 0952.06025
idMR: MR1624311
.
Date available: 2009-09-24T10:13:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127414
.
Reference: [1] M. Anderson, T. Feil: Lattice-Ordered Groups (Introduction).D. Reidel Publishing Company, 1988. MR 0937703
Reference: [2] S.J. Bernau: Free abelian lattice groups.Math. Ann. 180 (1969), 48–59. Zbl 0157.36801, MR 0241340, 10.1007/BF01350085
Reference: [3] P. Conrad: Lattice-Ordered Groups.Tulane Lecture Notes, Tulane University, 1970. Zbl 0258.06011
Reference: [4] A.M.W. Class, W.C. Holland: Lattice-Ordered Groups (Advances and Techniques).Kluwer Academic Publishers, 1989. MR 1036072
Reference: [5] G. Gratzer: Universal Algebra, 2 nd ed..Springer-Verlag, New York, 1979. MR 0538623
Reference: [6] W.C. Holland, E. Scringer: Free products of lattice-ordered groups.Algebra Universalis 2 (1972), 247–254. MR 0319843, 10.1007/BF02945034
Reference: [7] J. Martinez: Free products in varieties of lattice ordered groups.Czechoslovak Math. J. 22(97) (1972), 535–553. Zbl 0247.06022, MR 0311536
Reference: [8] J. Martinez: Free products of abelian $l$-groups.Czechoslovak Math. J. 23(98) (1973), 349–361. Zbl 0298.06023, MR 0371770
Reference: [9] J. Martinez (ed): Ordered Algebraic Structure, 11–49.Kluwer Academic Publishers, 1989. MR 1094821
Reference: [10] W.B. Powell, C. Tsinakis: Free products of abelian $l$-groups are cardinally indecomposable.Proc. Amer. Math. Soc. 86 (1982), 385–390. MR 0671199
Reference: [11] W.B. Powell, C. Tsinakis: Free products in the class of abelian $l$-groups.Pacific J. Math. 104 (1983), 429–442. MR 0684301, 10.2140/pjm.1983.104.429
Reference: [12] W.B. Powell, C. Tsinakis: Free products of lattice ordered groups.Algebra Universalis 18 (1984), 178–198. MR 0743466, 10.1007/BF01198527
Reference: [13] W.B. Powell, C. Tsinakis: Disjointness conditions for free products of $l$-groups.Archiv. Math. 46 (1986), 491–498. MR 0849853, 10.1007/BF01195016
Reference: [14] Dao-Rong Ton: Note on free abelian lattice groups (to appear)..
Reference: [15] Dao-Rong Ton: Free archimedean $l$-groups.Mathematica Scandinavica 74 (1994), 34–48. MR 1277787, 10.7146/math.scand.a-12478
Reference: [16] W.C. Weinberg: Free lattice-ordered abelian lattice groups.Math. Ann. 15 (1963), 187–199.
.

Files

Files Size Format View
CzechMathJ_48-1998-2_4.pdf 380.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo