Previous |  Up |  Next

Article

Title: Convergence estimate for second order Cauchy problems with a small parameter (English)
Author: Najman, Branko
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 4
Year: 1998
Pages: 737-745
Summary lang: English
.
Category: math
.
Summary: We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter $\varepsilon .$ The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem. (English)
MSC: 34E15
MSC: 34G20
MSC: 35B25
MSC: 35R15
MSC: 47N20
idZBL: Zbl 0952.35151
idMR: MR1658257
.
Date available: 2009-09-24T10:17:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127451
.
Reference: [1] Engel, K.-J.: On singular perturbations of second order Cauchy problems.Pac. J. Math. 152 (1992), 79–91. Zbl 0743.34063, MR 1139973, 10.2140/pjm.1992.152.79
Reference: [2] Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces.North Holland, 1985. Zbl 0564.34063, MR 0797071
Reference: [3] Najman, B.: Time singular limit of semilinear wave equations with damping.J. Math. Anal. Appl. 174 (1991), 95–117. MR 1212920, 10.1006/jmaa.1993.1104
.

Files

Files Size Format View
CzechMathJ_48-1998-4_11.pdf 328.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo