Previous |  Up |  Next

Article

Title: Compatible mappings of type (B) and common fixed point theorems in Saks spaces (English)
Author: Pathak, H. K.
Author: Khan, M. S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 1
Year: 1999
Pages: 175-185
Summary lang: English
.
Category: math
.
Summary: In this paper we first introduce the concept of compatible mappings of type (B) and compare these mappings with compatible mappings and compatible mappings of type (A) in Saks spaces. In the sequel, we derive some relations between these mappings. Secondly, we prove a coincidence point theorem and common fixed point theorem for compatible mappings of type (B) in Saks spaces. (English)
Keyword: Saks spaces
Keyword: compatible mappings of type (A)
Keyword: compatible mappings of type (B)
Keyword: coincidence
Keyword: common fixed points and compatible mappings
MSC: 47H10
MSC: 54H25
idZBL: Zbl 0949.54058
idMR: MR1676809
.
Date available: 2009-09-24T10:21:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127477
.
Reference: [1] A. Alexiewicz: The two-norm space.Stud. Math., special vol. (1963), 17–20. MR 0149229
Reference: [2] Y. J. Cho and S. L. Singh: A coincidence theorem and fixed point theorems in Saks spaces.Kobe J. Math. 3 (1986), 1–6. MR 0867797
Reference: [3] Y. J. Cho and S. L. Singh: An approach to fixed points in Saks spaces.Annales dela Soc. Scl. de Bruxelles, T. 9811–III (1984), 80–84. MR 0782739
Reference: [4] M. L. Divicaro, B. Fisher and S. Sessa: A common fixed point theorem of Greguš type.Publ. Inst. Math. 34 (1984), 83–89. MR 0901008
Reference: [5] B. Fisher and S. Sessa: On a common fixed point theorem of Greguš.Internat. J. Math. & Math. Sci. 9 (1986), 23–28. MR 0848231, 10.1155/S0161171286000030
Reference: [6] K. Goebel: A coincidence theorem.Bull. Acad. Polon. Sci. Ser. Math. 16 (1968), 733–735. Zbl 0165.49801, MR 0283648
Reference: [7] M. Greguš: A fixed point theorem in Banach spaces.Boll. Un. Mat. Ital. 17a (1980), 193–198. MR 0562137
Reference: [8] G. Jungck: Commuting maps and fixed points.Amer. Math. Monthly 83 (1976), 261–263. MR 0400196, 10.2307/2318216
Reference: [9] G. Jungck: Compatible and common fixed points.Internat. J. Math. and Math. Sci. 9 (1986), 771–779. MR 0870534, 10.1155/S0161171286000935
Reference: [10] G. Jungck: Compatible mappings and common fixed points (2), Internat.J. Math. and Math. Sci. 11 (1988), 285–288. MR 0939083, 10.1155/S0161171288000341
Reference: [11] G. Jungck: Common fixed points of commuting and compatible maps on compacta.Proc. Amer. Math. Soc. 103 (1988), 977–983. MR 0947693, 10.1090/S0002-9939-1988-0947693-2
Reference: [12] G. Jungck, P. P. Murthy and Y. J. Cho: Compatible mappings of type (A) and common fixed points.Math. Japonica 38 (1993), 381–390. MR 1213401
Reference: [13] H. Kaneko and S. Sessa: Fixed point theorems for compatible multivalued mappings.Internat. J. Math. and Math. Sci. 12 (1989), 257–262. MR 0994907, 10.1155/S0161171289000293
Reference: [14] S. M. Kang, Y. J. Cho and G. Jungck: Common fixed points of compatible mappings.Internat. J. Math. and Math. Sci. 13 (1990), 61–66. MR 1038647, 10.1155/S0161171290000096
Reference: [15] S. M. Kang and Y. P. Kim: Common fixed point theorems.Math. Japonica 37 (1992), 1031–1039. MR 1196378
Reference: [16] G. C. Kulshrestha: Single-valued mappings, multi-valued mappings and fixed point theorem in metric spaces.Doctoral Thesis, Garhwal Univ., 1976.
Reference: [17] R. N. Mukherjee and V. Verma: A note on a fixed point theorem of Greguš.Math. Japonica 35 (1988), 745–749. MR 0972387
Reference: [18] P. P. Murthy and B. K. Sharma: Some fixed point theorems on Saks spaces.Bull. Cal. Math. Soc. 84 (1992), 289–293. MR 1210602
Reference: [19] P. P. Murphy and B. K. Sharma and Y. J. Cho: Coincidence points, common fixed points and compatible maps of type (A) on Saks spaces.Preprint.
Reference: [20] S. A. Naimpally, S. L. Singh and J. H. M. Whitfield: Coincidence theorems.Preprint.
Reference: [21] H. K. Pathak and M. S. Khan: Compatible mappings of type (B) and common fixed pont theorems of Greguš type.Czechoslovak Math. J. 45(120) (1995), 685–698. MR 1354926
Reference: [22] T. Okada: Coincidence theorems on $L$-spaces.Math. Japonica 28 (1981), 291–295. Zbl 0471.54034, MR 0624218
Reference: [23] W. Orlicz: Linear operators in Saks spaces (I).Stud. Math. 11 (1950), 237–272. MR 0038556, 10.4064/sm-11-1-237-272
Reference: [24] W. Orlicz: Linear operators in Saks (II).Stud. Math. 15 (1955), 1–25. MR 0073942, 10.4064/sm-15-1-1-25
Reference: [25] W. Orlicz and V. Pták: Some results on Saks spaces.Stud. Math. 16 (1957), 16–68. MR 0094686
Reference: [26] S. Sessa: On a weak commutativity of mappings in fixed point consideratons.Publ. Inst. Math. 32(46) (1982), 149–153. MR 0710984
Reference: [27] S. L. Singh and Virendra: Coincidence theorems on 2-metric spaces.Indian J. Phy. Math. Sci. 2(B) (1982), 32–35.
Reference: [28] S. P. Singh and B. A. Meade: On common fixed point theorems.Bull. Austral. Math. Soc. 16 (1977), 49–53. MR 0438318, 10.1017/S000497270002298X
.

Files

Files Size Format View
CzechMathJ_49-1999-1_17.pdf 316.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo