Previous |  Up |  Next

Article

Title: Two-fold theorem on Fréchetness of products (English)
Author: Dolecki, S.
Author: Nogura, T.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 2
Year: 1999
Pages: 421-429
Summary lang: English
.
Category: math
.
Summary: A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided. (English)
Keyword: $\alpha_3$
Keyword: $\alpha_4$
Keyword: $\beta_3$
Keyword: $\beta_4$ spaces
Keyword: $\Phi$-space
Keyword: product space
Keyword: sequential space
Keyword: sequentially subtransverse
Keyword: strongly Fréchet
Keyword: transverse
MSC: 54A20
MSC: 54B10
MSC: 54D50
MSC: 54D55
MSC: 54G15
idZBL: Zbl 0949.54010
idMR: MR1692508
.
Date available: 2009-09-24T10:23:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127498
.
Reference: [1] A. V. Arhangel’skii: The frequency spectrum of a topological space and the product operation.Trans. Moscow Math. Soc. (1981), 164–200.
Reference: [2] S. Dolecki and S. Sitou: Precise bounds for sequential order of products of some Fréchet topologies.Topology Appl. (to appear). MR 1611269
Reference: [3] E. K. van Douwen: The product of a Fréchet space and a metrizable space.Topology Appl. 47 (1992), 163–164. Zbl 0759.54013, MR 1192305, 10.1016/0166-8641(92)90026-V
Reference: [4] R. Engelking: General Topology.PWN Warszawa (1977). Zbl 0373.54002, MR 0500780
Reference: [5] E. Michael: A quintuple quotient quest.General Topology Appl. 2 (1972), 91–138. Zbl 0238.54009, MR 0309045, 10.1016/0016-660X(72)90040-2
Reference: [6] E. Michael: A note on closed maps and compact sets.Israel J. Math. 2 (1964), 174–176. Zbl 0136.19303, MR 0177396
Reference: [7] T. Nogura: Fréchetness of inverse limits and products.Topology and Appl. 20 (1985), 59–66. Zbl 0605.54019, MR 0798445, 10.1016/0166-8641(85)90035-5
Reference: [8] T. Nogura: The product of $\langle \alpha _i\rangle $-spaces.Topology and Appl. 21 (1985), 251–259. MR 0812643
Reference: [9] J. Novák: On convergence group.Czechoslovak Math. J. 20 (1970), 357–374. MR 0263973
Reference: [10] P. Nyikos: The Cantor tree and the Fréchet-Urysohn property.Annals N.Y. Acad. Sc. 552 (1989), 109–123. Zbl 0894.54021, MR 1020779, 10.1111/j.1749-6632.1989.tb22391.x
Reference: [11] P. Nyikos: Subsets of $^\omega \omega $ and the Fréchet-Urysohn and $\alpha _i$-properties.Topology Appl. 48 (1992), 91–116. Zbl 0774.54019, MR 1195504, 10.1016/0166-8641(92)90021-Q
Reference: [12] V. V  Popov and D. V. Rančin: On certain strengthening of the property of Fréchet-Urysohn.Vest. Moscow Univ. 2 (1978), 75–80.
Reference: [13] Y. Tanaka: Products of sequential spaces.Proc. Amer. Math. Soc. 54 (1976), 371–375. Zbl 0292.54025, MR 0397665, 10.1090/S0002-9939-1976-0397665-6
.

Files

Files Size Format View
CzechMathJ_49-1999-2_17.pdf 340.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo