Previous |  Up |  Next

Article

Title: The coregular property on $\gamma$-spaces (English)
Author: Andrikopoulos, A.
Author: Stabakis, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 2
Year: 1999
Pages: 431-442
.
Category: math
.
MSC: 54E15
idZBL: Zbl 0949.54031
idMR: MR1692504
.
Date available: 2009-09-24T10:24:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127499
.
Reference: [EL] R. Engelking and D. Lutzer: Paracompactness in ordered spaces.Fund. Math. 94 (1977), 49–58. MR 0428278, 10.4064/fm-94-1-25-33
Reference: [F1] R. Fox: Solution of the ${\gamma }$-space problem.Proc. Amer. Math. Soc. 85 (1982), 606–608. Zbl 0505.54027, MR 0660614
Reference: [F2] R. Fox: A short proof of the Junnila’s quasi-metrization theorem.Proc. Amer. Math. Soc. 83 (3) (1981), 663–664. MR 0627716
Reference: [FK] R. Fox and J. Köfner: A regular counterexample to the ${\gamma }$-space conjecture.Proc Amer. Math. Soc. 94 (1985), 502–506. MR 0787902
Reference: [FL] P. Fletcher and W. F. Lindgren: Quasi-uniform spaces.Lectures Notes in Pure Appl. Math. 77, Marcel Dekker, New York, 1982. MR 0660063
Reference: [Ke] J. C. Kelly: Bitopological spaces.Proc. London Math. Soc. (3) 13 (1963), 71–89. Zbl 0107.16401, MR 0143169
Reference: [Ko] J. Köfner: Transitivity and the $\gamma $-space conjecture on ordered spaces.Proc. Amer Math. Soc. 81 (1981), 629–634. MR 0601744
Reference: [Kop] R. D. Kopperman: Which topologies are quasi-metrizable.Topology and its Aplications 52 (1993), 99–107. MR 1241186
Reference: [Ku1] H. P. Künzi: A note on Ralph Fox’s $\gamma $-space.Proc. Amer. Math. Soc. 91 (1984), 467–470. MR 0744650
Reference: [Ku2] H. P. Künzi: Quasi-uniform spaces-Eleven years later.Proc. of Coll. on Topol, János Bolyai Math. Soc., Szekszárd, Hungary, 1993. MR 1305128
Reference: [Ku3] H. P. Künzi: On strongly quasi-metrizable spaces.Arch. Math (Basel) 41 (1983), 57–63. 10.1007/BF01193823
Reference: [LF] W. F. Lindgren and P. Fletcher: Locally quasi-uniform spaces with countable bases.Duke Math. J 41 (1974), 231–240. MR 0341422, 10.1215/S0012-7094-74-04125-8
Reference: [MN] M. G Murdeshwar and S. A. Naimpally: Quasi-Uniform Topological Spaces.Noordhoff, Groningen, 1966. MR 0211386
Reference: [W] J. Williams: Locally uniform spaces.Trans. Amer Math. Soc. 168 (1972), 435–469. Zbl 0221.54022, MR 0296891, 10.1090/S0002-9947-1972-0296891-5
.

Files

Files Size Format View
CzechMathJ_49-1999-2_18.pdf 384.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo