Previous |  Up |  Next

Article

Title: Bifurcation of periodic solutions to variational inequalities in $\mathbb{R}^\kappa$ based on Alexander-Yorke theorem (English)
Author: Kučera, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 449-474
Summary lang: English
.
Category: math
.
Summary: Variational inequalities \[ U(t) \in K, (\dot{U}(t)-B_\lambda U(t) - G(\lambda ,U(t)),\ Z - U(t))\ge 0\ \text{for all} \ Z\in \ K, \text{a.a.} \ t\in [0,T) \] are studied, where $K$ is a closed convex cone in $\mathbb{R}^\kappa $, $\kappa \ge 3$, $B_\lambda $ is a $\kappa \times \kappa $ matrix, $G$ is a small perturbation, $\lambda $ a real parameter. The assumptions guaranteeing a Hopf bifurcation at some $\lambda _0$ for the corresponding equation are considered and it is proved that then, in some situations, also a bifurcation of periodic solutions to our inequality occurs at some $\lambda _I \ne \lambda _0$. Bifurcating solutions are obtained by the limiting process along branches of solutions to penalty problems starting at $\lambda _0$ constructed on the basis of the Alexander-Yorke theorem as global bifurcation branches of a certain enlarged system. (English)
Keyword: bifurcation
Keyword: periodic solutions
Keyword: variational inequality
Keyword: differential inequality
Keyword: finite dimensional space
Keyword: Alexander-Yorke theorem
MSC: 34A40
MSC: 34A60
MSC: 34C23
MSC: 34C25
MSC: 49J40
MSC: 58F14
idZBL: Zbl 1006.49005
idMR: MR1707987
.
Date available: 2009-09-24T10:24:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127502
.
Reference: [1] J. C. Alexander, J. A. Yorke: Global bifurcation of periodic orbits.Amer. J. Math. 100 (1978), no. 2, 263–292. MR 0474406, 10.2307/2373851
Reference: [2] J. P. Aubin, A. Cellina: Differential Inclusions.Springer Verlag, Berlin, 1984. MR 0755330
Reference: [3] M. Bosák, M. Kučera: A bifurcation of periodic solutions to differential inequalities in $\mathbb{R}^3$.Czechoslovak Math. J. 42 (117) (1992), 339–363. MR 1179505
Reference: [4] Sh.-N. Chow, J. Mallet-Paret: The Fuller index and global Hopf bifurcation.J. Diff. Eq. 29 (1978), no. 1, 66–85. MR 0492560, 10.1016/0022-0396(78)90041-4
Reference: [5] J. Eisner, M. Kučera: Hopf bifurcation and ordinary differential inequalities.Czechoslovak Math. J. 45 (120) (1995), no. 4, 577–608. MR 1354920
Reference: [6] M. Kučera: Bifurcation points of variational inequalities.Czechoslovak Math. J. 32 (107) (1982), 208–226. MR 0654057
Reference: [7] M. Kučera: A global continuation theorem for obtaining eigenvalues and bifurcation points.Czechoslovak Math. J. 38 (133) (1988), 120–137. MR 0925946
Reference: [8] M. Kučera: Bifurcation of periodic solutions to ordinary differential inequalities.In: Colloquia Math. Soc. J. Bolyai 62. Differential Equations, Budapest, 1991, pp. 227–255. MR 1468758
Reference: [9] M. Kučera: Stability of bifurcating periodic solutions of differential inequalities in $\mathbb{R}^3$.Math. Nachr. 197 (1999), 61–88. MR 1666194, 10.1002/mana.19991970106
Reference: [10] J. Kurzweil: Ordinary Differential Equations. Studies in Applied Mechanics 13.Elsevier, Amsterdam-Oxford-New York-Tokyo, 1986. MR 0929466
Reference: [11] J. L. Lions: Quelques méthodes de resolution de problemes aux limites non linéaires.Paris, 1969. MR 0259693
Reference: [12] J. E. Marsden, M. Mc Cracken: The Hopf Bifurcation Theorem and Applications.Springer, Berlin, 1976. MR 0494309
Reference: [13] P. H. Rabinowitz: Some global results for non-linear eigenvalue problems.J. Functional Analysis 7 (1971), 487–513. MR 0301587, 10.1016/0022-1236(71)90030-9
Reference: [14] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory.In: Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. Zbl 0281.47043
.

Files

Files Size Format View
CzechMathJ_49-1999-3_1.pdf 491.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo