Previous |  Up |  Next

Article

Title: Paths with restricted degrees of their vertices in planar graphs (English)
Author: Jendroľ, Stanislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 49
Issue: 3
Year: 1999
Pages: 481-490
Summary lang: English
.
Category: math
.
Summary: In this paper it is proved that every $3$-connected planar graph contains a path on $3$ vertices each of which is of degree at most $15$ and a path on $4$ vertices each of which has degree at most $23$. Analogous results are stated for $3$-connected planar graphs of minimum degree $4$ and $5$. Moreover, for every pair of integers $n\ge 3$, $ k\ge 4$ there is a $2$-connected planar graph such that every path on $n$ vertices in it has a vertex of degree $k$. (English)
MSC: 05C35
MSC: 05C38
idZBL: Zbl 1003.05055
idMR: MR1708382
.
Date available: 2009-09-24T10:24:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127504
.
Reference: [1] O. V. Borodin: On the total coloring of planar graphs.J. Reine Ange. Math. 394 (1989), 180–185. Zbl 0653.05029, MR 0977440
Reference: [2] O. V. Borodin: Computing light edges in planar graphs.In: Topics in Combinatorics and Graph Theory, R. Bodendiek, R. Henn (eds.), Physica-Verlag Heidelbergȳr 1990, pp. 137–144. Zbl 0705.05023, MR 1100031
Reference: [3] O. V. Borodin: Precise lower bound for the number of edges of minor weight in planar maps.Math. Slovaca 42 (1992), 129–142. Zbl 0767.05039, MR 1170097
Reference: [4] O. V. Borodin: Joint extension of two theorems of Kotzig on $3$–polytopes.Combinatorica 13 (1993), 121–125. Zbl 0777.05050, MR 1221181, 10.1007/BF01202794
Reference: [5] O. V. Borodin: Triangles with restricted degree sum of their boundary vertices in plane graphs.Discrete Math. 137 (1995), 45–51. Zbl 0814.05030, MR 1312443, 10.1016/0012-365X(94)E0144-7
Reference: [6] O. V. Borodin and D. P. Sanders: On light edges and triangles in planar graph of minimum degree five.Math. Nachr. 170 (1994), 19–24. MR 1302363
Reference: [7] B. Grünbaum: Acyclic colorings of planar graphs.Israel J. Math. 14 (1973), 390–408. MR 0317982, 10.1007/BF02764716
Reference: [8] B. Grünbaum: Polytopal graphs.In: Studies in Graph Theory, D. R. Fulkerson (eds.), MAA Studies in Mathematics 12, 1975, pp. 201–224. MR 0406868
Reference: [9] B. Grünbaum: New views on some old questions of combinatorial geometry.Int. Teorie Combinatorie, Rome, 1973 1 (1976), 451–468. MR 0470861
Reference: [10] B. Grünbaum and G. C. Shephard: Analogues for tiling of Kotzig’s theorem on minimal weights of edges.Ann. Discrete Math. 12 (1982), 129–140. MR 0806977
Reference: [11] J. Harant, S. Jendroľ and M. Tkáč: On 3-connected plane graphs without triangular faces.J. Combinatorial Theory B (to appear). MR 1710537
Reference: [12] M. Horňák and S. Jendroľ: Unavoidable sets of face types for planar maps.Discussiones Math. Graph Theory 16 (1996), 123–141. MR 1446351, 10.7151/dmgt.1028
Reference: [13] J. Ivančo: The weight of a graph.Ann. Discrete Math. 51 (1992), 113–116. MR 1206252, 10.1016/S0167-5060(08)70614-9
Reference: [14] J. Ivančo and S. Jendroľ: On extremal problems concerning weights of edges of graphs.Coll. Math. Soc. J. Bolyai, 60. Sets, Graphs and Numbers, Budapest (Hungary) 1991, North Holland, 1993, pp. 399-410. MR 1218205
Reference: [15] S. Jendroľ and Z. Skupień: Local structures in plane maps and distance colourings.Discrete Math. (to appear). MR 1830608
Reference: [16] E. Jucovič: Strengthening of a theorem about $3$–polytopes.Geom. Dedicata 3 (1974), 233–237. MR 0348629, 10.1007/BF00183214
Reference: [17] A. Kotzig: Contribution to the theory of Eulerian polyhedra.Mat.-Fyz. Časopis Sloven. Akad. Vied 5 (1955), 101–113. (Slovak) MR 0074837
Reference: [18] A. Kotzig: On the theory of Euler polyhedra.Mat.-Fyz. Časopis Sloven. Akad. Vied 13 (1963), 20–31. (Russian) MR 0162176
Reference: [19] A. Kotzig: Extremal polyhedral graphs.Ann. New York Acad. Sci. 319 (1979), 569–570.
Reference: [20] H. Lebesgue: Quelques conséquences simples de la formule d’Euler.J. Math. Pures Appl. 19 (1940), 19–43. Zbl 0024.28701, MR 0001903
Reference: [21] O. Ore: The Four-Color Problem.Academic Press, New York, 1967. Zbl 0149.21101, MR 0216979
Reference: [22] J. Zaks: Extending Kotzig’s theorem.Israel J. Math. 45 (1983), 281–296. Zbl 0524.05031, MR 0720304, 10.1007/BF02804013
.

Files

Files Size Format View
CzechMathJ_49-1999-3_3.pdf 370.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo